归并排序(JS)

这篇博客主要介绍了归并排序的原理及其在求解逆序对问题上的应用。归并排序无论在最好、最坏还是平均情况下,时间复杂度均为O(nlogn),空间复杂度为O(n),是一种稳定的排序算法。文中通过每日一题的形式,讲解了如何利用归并排序解决找到数组中最小的K个数和计算逆序对数量的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

归并排序(从小到大)

算法复杂度:
最好情况:O(nlogn)
最坏情况:O(nlogn)
平均情况:O(nlogn)
空间复杂度:O(n)
稳定性:稳定

function mergeSort(arr, start, end) {
    if (start >= end) {
        return;
    }
    let mid = start + parseInt((end - start) / 2);
    mergeSort(arr, start, mid);
    mergeSort(arr, mid + 1, end);
    merge(arr, start, mid, end);
}

function merge(arr, start, mid, end) {
    let temp = [];
    let len = 0;
    let i = start, j = mid + 1;
    for (; i <= mid && j <= end;) {
        if (arr[i] > arr[j]) {
            temp[len++] = arr[j++];
        } else {
            temp[len++] = arr[i++];
        }
    }
    while (i <= mid) {
        temp[len++] = arr[i++];
    }
    while (j <= end) {
        temp[len++] = arr[j++];
    }
    for (let t = 0; t < len; t++) {
        arr[t + start] = temp[t];
    }
}

let arr = [3,2,1,5,4];

mergeSort(arr , 0 , 4);

归并排序求逆序对
let num = 0; // 逆序对的个数

function mergeSort(arr, start, end) {
    if (start >= end) {
        return;
    }
    let mid = start + parseInt((end - start) / 2);
    mergeSort(arr, start, mid);
    mergeSort(arr, mid + 1, end);
    merge(arr, start, mid, end);
}

function merge(arr, start, mid, end) {
    let temp = [];
    let len = 0;
    let i = start, j = mid + 1; 
    for (; i <= mid && j <= end;) {
        if (arr[i] > arr[j]) {
          num += mid - i + 1;   // ============> core code ,
                                // 如果arr[i] > arr[j] , 则i~mid之间(包括i和mid)的元素都与j是逆序对 
          temp[len++] = arr[j++];
        } else {
          temp[len++] = arr[i++];
        }
    }
    while (i <= mid) {
        temp[len++] = arr[i++];
    }
    while (j <= end) {
        temp[len++] = arr[j++];
    }
    for (let t = 0; t < len; t++) {
        arr[t + start] = temp[t];
    }
}

let arr = [1,2,3,4,5,6,7,0];

mergeSort(arr , 0 , 7);

例题:
每日一题——最小的K个数(归并排序)
每日一题——数组中的逆序对(归并排序)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值