💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖
本博客的精华专栏:
【自动化测试】 【测试经验】 【人工智能】 【Python】
使用 Scikit-learn 和 Pandas 检测与处理缺失值的完整指南
在机器学习项目中,数据缺失是非常常见的问题之一。合理地检测和处理缺失值,是确保模型质量的重要前提。虽然 Scikit-learn 是一个强大的机器学习工具包,但它本身并不包含缺失值检测的功能,我们通常会结合 Pandas 和 NumPy 来完成这一任务。
本文将分为以下几个部分进行讲解:
- 使用 Pandas 检测每列缺失值
- 使用 NumPy 检测矩阵中的缺失值
- 使用 Scikit-learn 进行缺失值填充
- 可视化缺失数据
- 删除缺失值过多的列
- 使用高级填充方法(如多重插补)
一、使用 Pandas 检测每列缺失值(推荐)
Pandas 是数据分析领域的利器,对于结构化数据的缺失检测非常直观。
import pandas as pd
import numpy as np
示例数据
data = {
'A': [1, 2, np