图片标注工具LabelImg使用教程

项目地址:LabelImg
下载地址:Windows/Linux
百度云备份:最近几个版本 密码: cnn6

前言

我们知道,图片标注主要是用来创建自己的数据集,方便进行深度学习训练。本篇博客将推荐一款十分好用的图片标注工具LabelImg,重点介绍其安装以及使用的过程。如果想简便,请直接下载打包版本(下载地址见开头),无需编译,直接打开就能用!

在此感谢原作者在Github所做的贡献,博主发现软件一直在更新,各位小伙伴可以关注其最新版本。这款工具是全图形界面,用Python和Qt写的,最牛的是其标注信息可以直接转化成为XML文件,与PASCAL VOC以及ImageNet用的XML是一样的。

PS.作者在5月更新了代码,现在最新的版本号是1.3.0,博主亲测,源代码在Windows 10和Ubuntu 16.04上运行正常。

Ubuntu源码安装

由于Ubuntu系统自带python,这款软件在Ubuntu环境下的安装是最方便的。软件要求python版本在2.6以上,同时需要PyQt和lxml的支持。

Python2+Qt4

sudo apt-get install pyqt4-dev-tools
sudo pip install lxml
make qt4py2
python labelImg.py
python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

### LabelImg 工具简介 LabelImg 是一款基于 Python 和 Qt 的图形化图像标注工具,主要用于创建矩形框标注(bounding box),广泛应用于计算机视觉领域中的目标检测任务。它支持导出为 Pascal VOC XML 格式或其他常见格式的数据集文件。 --- ### 安装 LabelImg #### 1. 新建虚拟环境 为了防止依赖冲突,建议先创建一个新的 Python 虚拟环境并激活[^2]: ```bash # 创建虚拟环境 (venv) python -m venv labelimg_env # 激活虚拟环境 source labelimg_env/bin/activate # Linux/MacOS labelimg_env\Scripts\activate # Windows ``` #### 2. 安装 LabelImg 可以通过 pip 或源码方式安装 LabelImg。以下是两种常见的安装方法: - **通过 pip 安装** ```bash pip install labelimg ``` - **通过源码编译安装** 如果需要自定义功能或最新版本,可以从 GitHub 上克隆项目并手动构建[^3]: ```bash git clone https://github.com/tzutalin/labelImg.git cd labelImg # 安装依赖项 pip install pyqt5 lxml # 编译资源文件 make qt5py3 # 执行程序 python labelImg.py ``` --- ### 启动与使用 LabelImg #### 1. 启动 LabelImg 完成安装后,可以直接运行以下命令启动软件[^1]: ```bash labelImg ``` 如果是从源码安装,则执行 `python labelImg.py` 即可。 #### 2. 基本操作流程 - **加载图片**: 点击菜单栏的 “Open Dir”,选择包含待标注图片的文件夹。 - **设置保存路径**: 点击 “Change Save Dir” 设置标签文件存储位置。 - **切换类别**: 在左侧下拉列表中选择当前对象所属类别。 - **绘制边界框**: 鼠标左键拖拽绘制矩形框,覆盖目标区域。 - **保存标注**: 绘制完成后点击键盘上的快捷键 Ctrl+S 或者点击菜单栏的 “Save”。 更多高级功能可通过官方文档进一步学习。 --- ### 示例代码片段 以下是一个简单的脚本用于验证 LabelImg 是否正常工作以及查看其默认配置参数: ```python import subprocess def check_labelimg(): try: result = subprocess.run(['labelImg', '--version'], capture_output=True, text=True) print(f"LabelImg Version: {result.stdout.strip()}") except FileNotFoundError: print("Error: LabelImg is not installed or the command 'labelImg' is not recognized.") check_labelimg() ``` --- ### 注意事项 在实际应用过程中需要注意以下几点: - 图片分辨率应适配模型输入尺寸,过低可能导致标注精度下降。 - 对于大规模数据集,推荐批量处理以提高效率。 ---
评论 212
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值