阿里巴巴的DIN(Deep Interest Network)模型是一种创新的深度学习推荐系统模型,主要用于解决电商场景中的个性化推荐问题。它于2017年由阿里巴巴团队提出(论文:《Deep Interest Network for Click-Through Rate Prediction》),核心目标是捕捉用户动态变化的兴趣,特别是在用户历史行为中与当前候选商品相关的兴趣。DIN 通过注意力机制实现了用户兴趣的动态捕捉,成为推荐系统领域的里程碑式工作。其设计思想(如局部激活、数据自适应)对后续模型(如Transformer)也有深远影响。
一、DIN模型概述
1. 背景与核心问题
在电商推荐中,用户的历史行为(如点击、购买)是重要的兴趣信号。传统模型(如DNN、YouTube DNN)通常将用户行为序列简单聚合(如平均池化),忽略了两个关键点:
- 兴趣多样性:用户历史行为可能包含多个不相关的兴趣(如同时浏览服装和电子产品)。
- 局部激活:用户对当前商品的兴趣可能仅由部分历史行为触发(如浏览“手机”时,只有“手机配件”相关行为有用)。
DIN 通过注意力机制动态学习用户兴趣的权重,解决了上述两个关键问题。
2. 模型结构
DIN 的核心改进在于用户兴趣建模部分,整体结构如下: