推荐系统(二十五):基于阿里DIN(Deep Interest Network)的CTR模型实现

阿里巴巴的DIN(Deep Interest Network)模型是一种创新的深度学习推荐系统模型,主要用于解决电商场景中的个性化推荐问题。它于2017年由阿里巴巴团队提出(论文:《Deep Interest Network for Click-Through Rate Prediction》),核心目标是捕捉用户动态变化的兴趣,特别是在用户历史行为中与当前候选商品相关的兴趣。DIN 通过注意力机制实现了用户兴趣的动态捕捉,成为推荐系统领域的里程碑式工作。其设计思想(如局部激活、数据自适应)对后续模型(如Transformer)也有深远影响。

一、DIN模型概述

1. 背景与核心问题

在电商推荐中,用户的历史行为(如点击、购买)是重要的兴趣信号。传统模型(如DNN、YouTube DNN)通常将用户行为序列简单聚合(如平均池化),忽略了两个关键点:

  • 兴趣多样性:用户历史行为可能包含多个不相关的兴趣(如同时浏览服装和电子产品)。
  • 局部激活:用户对当前商品的兴趣可能仅由部分历史行为触发(如浏览“手机”时,只有“手机配件”相关行为有用)。

DIN 通过注意力机制动态学习用户兴趣的权重,解决了上述两个关键问题。


2. 模型结构

DIN 的核心改进在于用户兴趣建模部分,整体结构如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jin_Kwok

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值