题目描述:
桌子上摆列着n堆石子。你需要把每堆石子合成一堆新的大沙堆。规定,每次只能取相邻的石碓合成新的一堆,并将新的一堆的石子数记为该次合并的得分。问:这n堆石子合并成一堆时的最小得分。
这是一道经典的动态规划类题目,关键是数据很小,以至于3重循环的时间都轻轻松松,需要注意的是转移方程需要理解一下:
例如,f[i,j]表示的是把第i堆到第j堆内所有的石头合并成一堆的最优值。
f[i,j]=min{f[i,k]+f[k+1,j]+s[j]-s[i-1]}
s[i]是表示前i堆石头的价值总和。
这个转移方程其实是把i到j分为了2部分:
然后k左边的为f[i,k],右边因为不能重复算第k个,所以是f[k+1,j],最后还要把i,j合起来,就是i~j的总和,也就是最后一步合并的得分。
代码:
var
n,i,j,k:Longint;
a,s:array[0..10000] of Longint;
f:array[1..10000,1..10000] of Longint;
function min(x,y:Longint):Longint;
begin
if x<y then exit(x) else exit(y);
end;
begin
readln(n);
for i:=1 to n do
begin
read(a[i]);
s[i]:=s[i-1]+a[i];
end;
fillchar(f,sizeof(f),$7f div 3);
for i:=1 to n do
f[i,i]:=0;
for i:=n downto 1 do
for j:=i+1 to n do
for k:=1 to j-1 do
f[i,j]:=min(f[i,j],f[i,k]+f[k+1,j]+s[j]-s[i-1]);
writeln(f[1,n]);
end.