石子归并(动规例题)

本文介绍了一道动态规划问题——石子归并。题目要求将n堆石子合并成一堆,每次只能合并相邻的石堆,目标是最小化合并过程中的得分。关键在于理解转移方程f[i,j]=min{f[i,k]+f[k+1,j]+s[j]-s[i-1]},其中s[i]表示前i堆石子的总价值。通过这个方程将问题分解为两部分进行求解,并最终合并得分。" 71077591,5759709,Android release版APK打包教程,"['Android开发', '打包工具', '签名证书']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

桌子上摆列着n堆石子。你需要把每堆石子合成一堆新的大沙堆。规定,每次只能取相邻的石碓合成新的一堆,并将新的一堆的石子数记为该次合并的得分。问:这n堆石子合并成一堆时的最小得分。




这是一道经典的动态规划类题目,关键是数据很小,以至于3重循环的时间都轻轻松松,需要注意的是转移方程需要理解一下:

例如,f[i,j]表示的是把第i堆到第j堆内所有的石头合并成一堆的最优值。

f[i,j]=min{f[i,k]+f[k+1,j]+s[j]-s[i-1]}

s[i]是表示前i堆石头的价值总和。

这个转移方程其实是把i到j分为了2部分:


然后k左边的为f[i,k],右边因为不能重复算第k个,所以是f[k+1,j],最后还要把i,j合起来,就是i~j的总和,也就是最后一步合并的得分。

代码:

var
        n,i,j,k:Longint;
        a,s:array[0..10000] of Longint;
        f:array[1..10000,1..10000] of Longint;
function min(x,y:Longint):Longint;
begin
        if x<y then exit(x) else exit(y);
end;
begin
        readln(n);
        for i:=1 to n do
        begin
                read(a[i]);
                s[i]:=s[i-1]+a[i];
        end;

        fillchar(f,sizeof(f),$7f div 3);
        for i:=1 to n do
                f[i,i]:=0;
        for i:=n downto 1 do
                for j:=i+1 to n do
                        for k:=1 to j-1 do
                                f[i,j]:=min(f[i,j],f[i,k]+f[k+1,j]+s[j]-s[i-1]);
        writeln(f[1,n]);
end.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值