Flux Kontext Lora 模型训练环境搭建

🎈文章概述

Flux Kontext出现了有一段时间,kontext lora 其实与之前flux版本的lora并不直接通用,可以说flux的lora更多是教会Flux模型一些静态的知识和信息,而Kontext模型本身更多是需要教会模型“编辑”的动态信息。Kontext本身理解的图像编辑的信息有限,所以在一些场景下,需要通过Kontext对应的lora来强化某些“图像编辑”动作。

那么如何搭建Kontext Lora的训练环境呢?

网络上有一些资料,但大多比较复杂。这里就自己搭建环境的过程,简单写一个指南,供需要的朋友参考。

🎡操作步骤

【第一步】准备硬件

你需要准备一台显卡比较好的Nvidia显卡,最好是24G及以上显存(如果使用NF4量化模型,据说16G显存也可以,但是我没有尝试,大家可以自行尝试。)

同时,保证电脑空余硬盘20G以上,我安装完之后大概会是17.2G,后续还需要保存lora,所以最少也要20G以上。

【第二步】安装软件

现在使用比较多的训练器是https://github.com/lrzjason/T2ITrainer,可以支持量化模型,速度相对较快,配置要求相对较低。

打开目标硬盘的目标目录(路径建议不要有中文),然后在地址栏输入cmd并回车。

在命令行中输入(需要保持网络畅通):

git clone https://github.com/lrzjason/T2ITrainer.git

之后在目录里你会看到多了一个T2ITrainer的文件夹。

【第三步】设置虚拟环境

进入该文件夹,然后同样地址栏输入cmd并回车打开命令行。

建立虚拟环境。

python -m venv venv

接着输入以下命令激活虚拟环境

.\venv\Scripts\activate

类似这样:

【第四步】安装依赖

在打开的虚拟环境中,安装torch和torchvison等。

输入以下命令后并回车。(注意 这里要根据你自己的cuda版本安装,torch最低要2.3.0以上)

pip install torch==2.3.1+cu121 torchvision torchaudio -f https://mirrors.aliyun.com/pytorch-wheels/cu121/

之后安装其他相关依赖

pip install -r requirements.txt

有些朋友可能安装这一步会因为网络不太好容易出错,所以可以从国内镜像安装。

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

【第五步】下载模型

从以下链接下载模型:

https://pan.quark.cn/s/81d9d518f601

之后将整个文件夹,放在T2ITrainer文件夹的根目录下

【第六步】开始训练

在虚拟环境中输入以下指令启动训练界面的后台。

python ui_flux_fill.py

之后就可以复制这个url,到浏览器中手动打开:

接下来就可以配置参数和开始训练咯。

【第七步】后续训练

后续再使用的话,只需要先进入T2ITrainer目录,然后地址栏输入cmd进入终端。

执行:

.\venv\Scripts\activate

打开虚拟环境。

然后虚拟环境输入:

python ui_flux_fill.py

启动训练后台。

然后到浏览器打开虚拟环境中提示的网址,就可以愉快的开始训练kontext的lora啦~

最后,这里是“聚梦小课堂”,如果觉得不错,请点个赞支持一下👍

<think>首先,用户的问题是关于如何将Flux.1 Kontext模型集成到ComfyUI中,特别是模型文件应该放在哪个目录。用户说:“我想将Flux.1 Kontext模型集成到ComfyUI中,用户不知道应将模型文件放置在哪个目录。 请问Flux.1 Kontext模型如何在ComfyUI中使用 应该放到哪个文件夹” 根据系统指令,我需要: - 使用中文回答。 - 结构清晰,帮助用户逐步解决问题。 - 引用相关段落时添加引用标识。 - 生成相关问题。 参考提供的引用: - 引用[1]:提到了下载FLUX.1模型的命令,如wget http://file.s3/damodel-openfile/FLUX.1/FLUX.1-dev.tar,以及解压后的目录。 - 引用[2]:关于Flux Kontext和Omnigen 2的集成,提到用户可通过节点直接调用这些模型。 - 引用[3]:详细描述了FLUX.1 Kontext的不同版本和训练方法。 - 引用[4]:关于Comfy-WaveSpeed优化速度的提醒,特别是Windows用户需要注意的节点问题。 用户的问题聚焦在模型文件的放置位置。在ComfyUI中,模型文件通常放在特定的子目录中,比如`models`目录下的不同子文件夹,如`checkpoints`、`loras`等,具体取决于模型类型。 从引用[1]中,它提到了下载FLUX.1模型并解压,但没有指定ComfyUI中的具体目录。引用[1]说:“解压后完成后可看到如下目录”,但没有详细说明目录结构。用户需要知道在ComfyUI中放置模型的位置。 在ComfyUI的标准结构中: - 主模型(如Stable Diffusion模型)通常放在`ComfyUI/models/checkpoints/`目录。 - 其他模型如VAE、LORA等有各自的子目录。 对于Flux.1 Kontext模型,根据引用[3],它似乎是基于扩散模型的图像生成和编辑工具,可能属于主模型类型。 引用[2]提到“用户可通过节点直接调用这些模型”,暗示模型文件需要被ComfyUI识别,所以放置位置很重要。 基于通用知识: - 在ComfyUI中,自定义模型应放在`ComfyUI/models/`下的相应子目录。 - 对于Flux.1,它可能被当作一个checkpoint模型,所以放在`checkpoints`目录。 从引用[1]的下载命令,它下载了`FLUX.1-dev.tar`,解压后可能有模型文件,如`.ckpt`或`.safetensors`文件,这些需要移动到ComfyUI的模型目录。 具体步骤: 1. 下载模型文件。 2. 解压文件。 3. 将模型文件移动到ComfyUI的`models/checkpoints/`目录。 4. 在ComfyUI中通过节点调用模型。 引用[1]提到“解压后完成后可看到如下目录”,但没有列出目录内容。用户可能需要知道文件扩展名。 在回答中,我应该: - 逐步指导用户放置模型文件。 - 建议使用`checkpoints`目录。 - 提醒可能需要的额外步骤,如配置节点。 引用[4]提到Windows用户需要注意Comfy-WaveSpeed节点的问题,但用户的问题是关于模型放置,所以可能不直接相关,但可以提及作为一般提醒。 生成相关问题: - 基于主题,生成与Flux.1模型使用、优化或常见问题相关的问题。 回答结构: 1. 确认用户问题。 2. 解释模型放置位置。 3. 提供具体步骤。 4. 添加引用标识。 5. 生成相关问题。 最终回答: - 使用中文。 - 清晰、可靠。</think>### Flux.1 Kontext模型在ComfyUI中的集成指南 感谢您的查询!将Flux.1 Kontext模型集成到ComfyUI中是一个常见需求,涉及模型文件的正确放置和配置。Flux.1 Kontext是一个基于扩散模型的图像生成和编辑工具,支持文本到图像、图像到图像等多种任务[^3]。在ComfyUI中,模型文件需要放置在特定目录下才能被节点识别和调用。以下是逐步指导,确保过程清晰可靠。 #### 步骤1: 下载和解压Flux.1 Kontext模型文件 首先,您需要获取Flux.1 Kontext模型文件。根据引用内容,Flux.1模型有多个版本(如FLUX.1-dev或FLUX.1-schnell),您可以从官方源下载。例如,使用wget命令下载FLUX.1-dev模型: ```bash # 下载FLUX.1-dev模型(假设您有访问权限) wget http://file.s3/damodel-openfile/FLUX.1/FLUX.1-dev.tar ``` 下载完成后,解压文件: ```bash tar -xf FLUX.1-dev.tar ``` 解压后,您会得到一个目录,通常包含模型权重文件(如`.ckpt`、`.safetensors`或`.pth`格式)和可能的配置文件[^1]。确保检查解压目录中的文件类型。 #### 步骤2: 放置模型文件到ComfyUI的指定目录 在ComfyUI中,Flux.1 Kontext模型应作为主模型(checkpoint)处理,因此文件需要放在`models/checkpoints/`目录下。这是ComfyUI的标准结构,节点会自动扫描此目录加载模型。 - **具体路径**: - 将解压后的模型文件(如`FLUX.1-dev.ckpt`或类似文件)复制或移动到以下位置: ``` ComfyUI/models/checkpoints/ ``` - 如果模型包含额外的文本编码器(如Clip模型),则需将相关文件放在`models/clip/`目录下[^1]。例如: ```bash # 下载Clip模型(如果需要) wget http://file.s3/damodel-openfile/FLUX.1/flux_text_encoders.tar tar -xf flux_text_encoders.tar mv 解压后的文件/* ComfyUI/models/clip/ ``` #### 步骤3: 在ComfyUI中调用Flux.1 Kontext模型 放置文件后,重启ComfyUI服务(或刷新UI),即可通过节点集成模型: - 在ComfyUI工作流中,添加一个“Load Checkpoint”节点。 - 在节点参数中,选择`FLUX.1-dev`或其他您放置的模型文件。 - Flux.1 Kontext支持高级功能,如“分步编辑”和“明确保留”原则,您可以通过文本指令精准控制图像生成(例如,修改主体颜色或背景)[^2]。 示例工作流片段(伪代码): ``` [Load Checkpoint] -> [选择FLUX.1模型] -> [Text Prompt节点] -> [图像生成节点] ``` - 如果您使用Flux Kontext的特定功能(如风格迁移),ComfyUI可能需额外节点(如“Flux Kontext Editor”节点),这些节点通常在模型加载后自动可用[^2]。 #### 重要注意事项 1. **文件类型验证**:确保模型文件是ComfyUI支持的格式(如`.ckpt`或`.safetensors`)。如果下载的文件是归档包(如.tar),解压后仅移动模型权重文件,而非整个目录。 2. **性能优化**:如果您遇到生成速度慢的问题,可参考Comfy-WaveSpeed优化方案。但注意:Windows用户需屏蔽“Compile Model+”节点以避免错误;Linux用户无此限制[^4]。 3. **模型版本**:Flux.1 Kontext有多个版本(如dev或schnell),dev版本更适合图像编辑任务,而schnell可能优化了生成速度[^3]。选择与您需求匹配的版本。 4. **错误处理**:如果模型加载失败,检查ComfyUI日志(通常位于`ComfyUI/logs/`),常见问题包括文件权限错误或路径不正确。 通过以上步骤,Flux.1 Kontext模型应能顺利集成。如果您在部署中遇到具体问题,建议查阅ComfyUI官方文档或Flux.1示例工作流[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聚梦小课堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值