05 - Clickhouse的数据类型

目录

1、整型

2、浮点型

3、布尔型

4、Decimal 型

5、字符串

5.1、String

5.2、FixedString(N)

6、枚举类型

6.1、用法演示

6.2、这个 x 列只能存储类型定义中列出的值:'hello'或'world'

6.3、如果尝试保存任何其他值,ClickHouse 抛出异常

6.4、如果需要看到对应行的数值,则必须将 Enum 值转换为整数类型

7、时间类型

8、数组


1、整型

固定长度的整型,包括有符号整型或无符号整型

整型范围(-2n-1~2n-1-1)

  • Int8 - [-128 : 127]
  • Int16 - [-32768 : 32767]
  • Int32 - [-2147483648 : 2147483647]
  • Int64 - [-9223372036854775808 : 9223372036854775807]

无符号整型范围(0~2n-1)

  • UInt8 - [0 : 255]
  • UInt16 - [0 : 65535]
  • UInt32 - [0 : 4294967295]
  • UInt64 - [0 : 18446744073709551615]

使用场景: 个数、数量、也可以存储型 id

2、浮点型

Float32 - float

Float64 – double

建议尽可能以整数形式存储数据。例如,将固定精度的数字转换为整数值,如时间用毫秒为单位表示,因为浮点型进行计算时可能引起四舍五入的误差

使用场景:一般数据值比较小,不涉及大量的统计计算,精度要求不高的时候。比如 保存商品的重量。

3、布尔型

没有单独的类型来存储布尔值。可以使用 UInt8 类型,取值限制为 0 或 1。

4、Decimal 型

        有符号的浮点数,可在加、减和乘法运算过程中保持精度。对于除法,最低有效数字会 被丢弃(不舍入)。

有三种声明:

  • Decimal32(s),相当于 Decimal(9-s,s),有效位数为 1~9
  • Decimal64(s),相当于 Decimal(18-s,s),有效位数为 1~18 
  • Decimal128(s),相当于 Decimal(38-s,s),有效位数为 1~38

s 标识小数位

使用场景: 一般金额字段、汇率、利率等字段为了保证小数点精度,都使用 Decimal 进行存储

5、字符串

5.1、String

        字符串可以任意长度的。它可以包含任意的字节集,包含空字节。

5.2、FixedString(N)

        固定长度 N 的字符串,N 必须是严格的正自然数。当服务端读取长度小于 N 的字符 串时候,通过在字符串末尾添加空字节来达到 N 字节长度。 当服务端读取长度大于 N 的 字符串时候,将返回错误消息。

        与 String 相比,极少会使用 FixedString,因为使用起来不是很方便。

使用场景:

        名称、文字描述、字符型编码。 固定长度的可以保存一些定长的内容,比 如一些编码,性别等但是考虑到一定的变化风险,带来收益不够明显,所以定长字符串使用 意义有限

6、枚举类型

包括 Enum8 和 Enum16 类型。Enum 保存 'string'= integer 的对应关系。

  • Enum8 用 'String'= Int8 对描述。
  • Enum16 用 'String'= Int16 对描述。

6.1、用法演示

创建一个带有一个枚举 Enum8('hello' = 1, 'world' = 2) 类型的列

CREATE TABLE t_enum 
( 
 x Enum8('hello' = 1, 'world' = 2) 
) 
ENGINE = TinyLog;

6.2、这个 x 列只能存储类型定义中列出的值:'hello'或'world'

hadoop102 :) INSERT INTO t_enum VALUES ('hello'), ('world'), ('hello'); 

6.3、如果尝试保存任何其他值,ClickHouse 抛出异常

hadoop102 :) insert into t_enum values('a') 

6.4、如果需要看到对应行的数值,则必须将 Enum 值转换为整数类型

hadoop102 :) SELECT CAST(x, 'Int8') FROM t_enum;

使用场景:

        对一些状态、类型的字段算是一种空间优化,也算是一种数据约束。但是实 际使用中往往因为一些数据内容的变化增加一定的维护成本,甚至是数据丢失问题。所以谨 慎使用

7、时间类型

目前 ClickHouse 有三种时间类型

  • Date 接受年-月-日的字符串比如 ‘2019-12-16’
  •  Datetime 接受年-月-日 时:分:秒的字符串比如 ‘2019-12-16 20:50:10’
  •  Datetime64 接受年-月-日 时:分:秒.亚秒的字符串比如‘2019-12-16 20:50:10.66’

日期类型,用两个字节存储,表示从 1970-01-01 (无符号) 到当前的日期值。

还有很多数据结构,可以参考官方文档:https://clickhouse.yandex/docs/zh/data_types/

8、数组

Array(T):由 T 类型元素组成的数组。

T 可以是任意类型,包含数组类型。 但不推荐使用多维数组,ClickHouse 对多维数组 的支持有限。例如,不能在 MergeTree 表中存储多维数组。

(1)创建数组方式 1,使用 array 函数

hallo102 :) SELECT array(1, 2) AS x, toTypeName(x) ;

SELECT
    [1, 2] AS x,
    toTypeName(x)

Query id: 537b3a3a-285e-4400-a751-0fa42a7ea645

┌─x─────┬─toTypeName(array(1, 2))─┐
│ [1,2] │ Array(UInt8)            │
└───────┴─────────────────────────┘

1 rows in set. Elapsed: 0.006 sec.

hallo102 :)

(2)创建数组方式 2:使用方括号

hallo102 :) SELECT [1, 2] AS x, toTypeName(x);

SELECT
    [1, 2] AS x,
    toTypeName(x)

Query id: 8fc0f908-ff6f-4a1d-8083-aa7c31543eef

┌─x─────┬─toTypeName([1, 2])─┐
│ [1,2] │ Array(UInt8)       │
└───────┴────────────────────┘

1 rows in set. Elapsed: 0.005 sec.

hallo102 :)
<think>好的,我现在需要解决用户提到的Kafka Connect与ClickHouse集成时数据拉取失败的问题。首先,我得先理解用户的具体情况。用户可能已经设置了Kafka Connect,并使用某个Connector(比如ClickHouse Sink Connector)来将数据从Kafka导入ClickHouse,但遇到了无法拉取数据的问题。 接下来,我需要考虑可能的原因。根据经验,常见的问题可能包括配置错误、网络问题、数据格式不兼容、权限问题或资源不足等。我需要逐一分析这些可能性。 首先检查配置是否正确。用户需要确认Kafka Connect的配置文件中关于ClickHouse的连接参数是否正确,比如数据库URL、用户名、密码、表名等。例如,ClickHouse的JDBC驱动是否正确配置,端口是否正确(默认是8123)。如果配置有误,连接自然会失败。 然后,网络连接问题也是一个常见因素。用户需要确保Kafka Connect所在的服务器能够访问ClickHouse实例。可能需要检查防火墙设置、安全组规则,或者使用telnet命令测试端口连通性。例如,执行`telnet clickhouse-host 8123`来验证连接是否畅通。 数据格式或结构不匹配也可能导致问题。如果Kafka中的消息格式(如JSON、Avro)与ClickHouse表结构不一致,解析时会出现错误。用户需要确认消息的键值结构、字段类型是否与ClickHouse表的定义匹配。例如,日期格式是否一致,或者是否存在字段缺失的情况。 权限问题也不容忽视。ClickHouse用户需要有足够的权限来写入目标表。需要检查使用的账号是否有INSERT权限,或者表是否存在。如果表不存在,可能需要设置自动建表,或者手动创建表结构。 接下来是Connector的兼容性和版本问题。用户需要确认使用的ClickHouse Connector是否与当前版本的Kafka Connect和ClickHouse兼容。有时候,旧版本的Connector可能不支持新功能或存在已知的bug,需要升级到最新版本。 日志分析是关键步骤。查看Kafka Connect的日志文件,寻找错误信息或异常堆栈跟踪。常见的错误可能包括连接超时、认证失败、SQL语法错误等。例如,日志中可能出现“Connection refused”或“Authentication failed”等提示,帮助定位问题。 资源不足也可能导致拉取失败。检查ClickHouse服务器的负载情况,如CPU、内存、磁盘空间是否充足。高负载可能导致处理请求变慢或失败。此外,Kafka Connect所在节点的资源是否足够处理数据流,尤其是在高吞吐量的情况下。 如果使用第三方Connector(如camus或Kinesis Data Streams),需要参考其文档中的注意事项。例如,引用中提到的camus项目需要谨慎使用,可能存在稳定性问题。用户应确认Connector的可靠性和社区支持情况,必要时更换其他解决方案。 此外,用户还可以考虑其他替代方案,比如使用Kafka的消费者API自行编写数据导入程序,或者使用其他ETL工具(如Debezium、Apache NiFi)来实现数据同步,这可能提供更灵活的配置和更好的兼容性。 最后,建议用户逐步排查,从配置检查开始,逐步验证网络、权限、数据格式等,结合日志分析定位具体原因,并进行相应的调整或升级。如果问题依然存在,可能需要查阅Connector的官方文档或寻求社区支持。</think>### Kafka Connect与ClickHouse集成数据拉取失败解决方案 #### 1. 检查Connector配置 - **连接参数验证**:确保ClickHouse的地址、端口(默认`8123`)、数据库名、用户名和密码在Connector配置文件中正确填写。例如: ```json { "name": "clickhouse-sink", "config": { "connector.class": "com.clickhouse.kafka.connect.ClickHouseSinkConnector", "connection.url": "jdbc:clickhouse://clickhouse-server:8123/db_name", "connection.user": "user", "connection.password": "password", "topics": "target_topic" } } ``` - **数据格式匹配**:确认Kafka消息的序列化格式(如JSON、Avro)与ClickHouse表结构兼容。若使用JSON,需确保字段类型对应,例如时间字段格式是否为`DateTime`或`String`。 #### 2. 网络与权限排查 - **网络连通性测试**:在Kafka Connect服务器执行命令验证连接: ```bash telnet clickhouse-server 8123 # 或使用nc命令 ``` 若无法连通,需检查防火墙规则或云服务安全组设置[^1]。 - **ClickHouse权限检查**: ```sql SHOW GRANTS FOR user; -- 确认用户是否有INSERT权限 CREATE TABLE IF NOT EXISTS ...; -- 确保目标表存在 ``` #### 3. 日志分析与错误定位 - **查看Kafka Connect日志**: ```bash tail -f /path/to/connect/logs/connect.log | grep "ERROR" ``` 常见错误示例: - **连接超时**:`java.net.ConnectException: Connection refused` - **认证失败**:`ClickHouse exception: code: 516, message: user: Access denied` - **数据格式错误**:`Cannot parse string 'invalid_date' as DateTime` #### 4. 第三方Connector兼容性处理 - **版本匹配**:若使用开源Connector(如`clickhouse-kafka-connector`),需确认其支持当前ClickHouse版本。例如,ClickHouse 22.x可能要求Connector ≥1.5.0。 - **替代方案参考**:若稳定性不足,可考虑以下组合: - **Kafka + Camus + Hadoop**:通过批量拉取数据到HDFS,再导入ClickHouse(适用于离线场景)[^1] - **Kinesis Data Streams + Lambda**:实时处理数据后写入ClickHouse(需AWS生态)[^2] #### 5. 性能优化与资源调整 - **调整批处理参数**:在Connector配置中增加批量写入参数,减少请求频率: ```json { "batch.size": "1000", "max.flush.records": "500", "retry.backoff.ms": "3000" } ``` - **监控资源使用**: - ClickHouse:检查`system.metrics`表,关注`Query`、`Insert`相关指标。 - Kafka Connect:监控JVM堆内存(建议≥2GB)和CPU使用率。 #### 6. 代码级调试(可选) 若问题仍未解决,可在Connector代码中添加调试日志,或使用JDBC直接测试写入: ```java // 示例:Java JDBC写入测试 try (Connection conn = DriverManager.getConnection("jdbc:clickhouse://..."); Statement stmt = conn.createStatement()) { stmt.execute("INSERT INTO table VALUES ('test')"); } catch (SQLException e) { e.printStackTrace(); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值