Context Engineering认识(二)

需求即供给

  1. 第一次接触这个词,是最近阿里在重塑组织架构的相关新闻中提到的概念,即消费者的需求的概念和供应商处在同样的生态位,具备周期性和优质劣质的变化。
  2. 在AI应用开发领域,用户在自然语言提出需求的那一刻,大模型接收到了需求,但在大模型的角度:系统模型定义,历史聊天记录,可使用的mcp工具,长期记忆(也可以是用户画像)等这些和提示词都是相同的角色,即上下文要素。
  3. 提示词工程,即便构建的如何精妙,也只是影响大模型最终输出结果的上下文的一环。如何准确的识别用户的意图,并在有限的上下文空间内,将和用户意图相关的上下文信息输入大模型,是直接影响大模型输出关键主要的因素。

AI应用应该努力的方向

纯主观的想法,没有业界依据。

  1. 如果所有的输入都是上下文的一部分,对大模型职责定位而已,它不应该是一个非常聪明,十八般武艺样样精通,即它不应该存在某个领域专属大模型的说法。在系统提示词环节设置复杂的专属领域的提示限定不是AI应用发展的进步,只是国内企业的销售技巧。
  2. 在向量数据库的基础上,将用户的上下文解析出关键元素(即话题相关的关键词),纳入向量数据库,对所有元素加以权重区分,随着用户话题的深入或变化,不论是历史对话的权重,还是长记忆/知识库等权重都在不断变化调整,只有用户当前提供的提示词的权重不变,以此来解决在有限上下文空间内,提供的上下文信息最精简且有效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值