需求即供给
- 第一次接触这个词,是最近阿里在重塑组织架构的相关新闻中提到的概念,即消费者的需求的概念和供应商处在同样的生态位,具备周期性和优质劣质的变化。
- 在AI应用开发领域,用户在自然语言提出需求的那一刻,大模型接收到了需求,但在大模型的角度:系统模型定义,历史聊天记录,可使用的mcp工具,长期记忆(也可以是用户画像)等这些和提示词都是相同的角色,即上下文要素。
- 提示词工程,即便构建的如何精妙,也只是影响大模型最终输出结果的上下文的一环。如何准确的识别用户的意图,并在有限的上下文空间内,将和用户意图相关的上下文信息输入大模型,是直接影响大模型输出关键主要的因素。
AI应用应该努力的方向
纯主观的想法,没有业界依据。
- 如果所有的输入都是上下文的一部分,对大模型职责定位而已,它不应该是一个非常聪明,十八般武艺样样精通,即它不应该存在某个领域专属大模型的说法。在系统提示词环节设置复杂的专属领域的提示限定不是AI应用发展的进步,只是国内企业的销售技巧。
- 在向量数据库的基础上,将用户的上下文解析出关键元素(即话题相关的关键词),纳入向量数据库,对所有元素加以权重区分,随着用户话题的深入或变化,不论是历史对话的权重,还是长记忆/知识库等权重都在不断变化调整,只有用户当前提供的提示词的权重不变,以此来解决在有限上下文空间内,提供的上下文信息最精简且有效。