EDA皮肤电信号测量与分析方法

皮肤电反应是最敏感的情绪反馈之一,来源于皮肤汗腺的自主激活。与情绪、唤醒度和注意力等密切相关,是生理学反应系统中应用最广泛的测量指标类型。同时,因其稳定性高、测量简便、灵敏度高等优势,成为反映个体交感神经兴奋性变化的最有效、最敏感的生理参数。

图片

·

皮肤电反应可以作为评价个体生理唤醒、认知负荷、努力程度、情绪反应、以及应激能力的良好指标,可应用于产品设计、用户体验测评、操作人员应激反应等研究内容。

一、什么是皮肤电

我们的身体大约有三百万个汗腺,在手掌、手指以及脚底分布较为明显。当我们的机体受到感官刺激或者情绪产生变化时,皮肤内的血管会产生收缩和舒张,机体的汗腺被激活而发生变化,进而分泌水分,通过毛孔进入皮肤表面,在分泌液中的离子改变电流正负平衡,我们把这种可测量的皮肤电导的变化(皮肤电导增加等于皮肤电阻降低)称之为皮电活动(Electrodermal activity ,EDA)。皮电活动能够非常快速、灵敏地反应刺激事件对个体的影响程度。

人类的汗液是由我们的自主神经驱动来满足行为需求,一般来说,自主神经包括两个部分:交感神经系统代表快速反应动员系统,促进立即行动,交感神经活动的增加与自主神经相关,如心率变快、血压增加。副交感神经系统表示缓慢变化,与调节和休息相关。

皮肤电常见名称

皮肤电导(SC)、原发性皮肤反应(GSR)、皮肤电反应(EDR)、皮肤电导反应(SCR)、交感神经皮肤反应(SSR)和皮肤传导水平(SCL)等。相关资料显示,皮电基本上采用EDA和GSR两种简称表示,但两者之间没有明确区别,EDA表示的是皮肤电活动,GSR表示的是原发性皮肤电反应。

二、信号组成

EDA信号主要分为两部分,包括渐变信号Tonic Data和突变信号Phasic Data组成。

图片

基本成分解读

  • SCL(Skin conductance level ):皮肤电导中的渐变水平,称为皮肤电导水平
  • SCR(Skin conductance response):皮肤电导中出现的瞬时、较快的波动,称为皮肤电导反应
  • NS-SCRs(Non-specific SCR):自发出现,与刺激事件无关,称为非特异性SCR
  • ER-SCR(Event-related SCR):特定事件(如视觉刺激或应激事件)诱发出相应的SCRs,称为事件相关SCR

Tonic Data:

Tonic Data 指总体的缓慢变化信号,个体间的基线水平差异较大,范围在 2-20µS 之间。根据不同的环境因素和皮肤特性,同一个人的皮肤在很长一段时间内Tonic Data也会发生变化。皮肤电导水平(SCL)是测量Tonic成分最常用的方法。相关研究表明,SCL的变化与个体的自主觉醒水平有关,如情绪的一般水平和压力水平。由于SCL变化缓慢,测量时间需要足够长。

SCL水平会根据个体差异和实验环境变化而变化,所有数值本身需要结合基线分析才有意义。

Phasic Data:

Phasic Data 指交感神经活动引起的快速变化部分,也被认为是皮肤电导响应(SCRs)。SCRs在皮电信号中可以直观的看到快速的波动及较大的波幅。其中包括:事件相关SCR(ER-SCR),常用作解释特定刺激事件与情绪唤醒水平相关关系的测量方法;非特异性SCR(NS-SCR),不同被试的NS-SCR频率可能不同,平均为每分钟1-3次,高水平的觉醒也与较高的NS-SCR频率有关。

在进行ER-SCR实验设计中,一定要注意SCR响应速度问题(一般在刺激呈现之后1-5s开始反应),需要保证刺激之间的时间间隔。

三、测量原理

皮电反应是由于当机体受外界刺激或情绪状态发生改变时,其植物神经系统的活动引起皮肤内血管的舒张和收缩以及汗腺分泌等变化,从而导致皮肤电阻发生的改变引起的。

图片

EDA测量是通过将一对电极放置在皮肤表面,在皮肤上施加一个微小的恒定电压,这样流过皮肤的电流与皮肤电导成正比,通过电流电压转换后,皮肤电导变化信号将被记录,因此皮肤电导响应又称为皮肤电流响应。

使用电极测量皮肤电导率,测量单位为微西门子 micro-Siemens(μS)。

四、测量方法

为获得良好的EDA信号质量,电极应该接触到皮肤中汗腺充足的区域。在我们身体的各个部位都能找到不同比例的汗腺,其中,手掌、足底、手指和肩膀是放置皮电电极最常见的位置,因为它们有高密度的汗腺。

图片

手指、手掌测量

手掌的汗腺密度最高,因此是连接EDA电极的首选部位。手指通常比手掌的皮电信号低,但大多数情况下也是放置电极的合适位置。

足底测量

脚的内侧也是测量皮电的好位置,因为它具有丰富的汗腺。当参与者需要使用双手进行任务操作时,则推荐此种方式。

如何确定皮电的电极位置

电极的放置位置取决于实验设计、可用电极的类型以及被试所允许的干扰程度。在同一个实验中,如果确定了最合适的测量位置,尽量保持对于所有被试以同样的方式进行采集,以进行更可靠的跨被试结果对比。以下表格为不同测量方法对比:

身体位置汗腺密度干扰性使用建议
手掌实验中不需要使用测量的手掌
手指实验中不需要使用测量的手指
足底实验中需要使用双手进行交互作业
肩膀实验中需要使用手脚进行操作任务
手腕实验中需要使用手脚进行操作任务

自主研发EDA测量系统

包括智能穿戴耳夹传感器、智能穿戴手腕传感器、智能穿戴手指传感器、二代Biosensor无线皮肤电感器等

图片

五、ErgoLAB中的EDA分析

图片

SCL时域分析

皮电时域分析指在外界环境刺激下个体皮电信号随时间变化的趋势。测量的指标一般包括:SC、Tonic(SCL)、Phasic(SCR)各信号的均值(Mean)、最大值(Max)、最小值(Min)、标准差(Standard Deviation)、方差(Variance)、极距(Polar Distance)等指标。

常用的皮电时域分析指标

  • 在长时间情绪刺激下,SCL是常用的指标,个体活跃时电导水平相对增高,松弛时则相对较低,是对启动势能的一种良好的评价参数。
  • SCL的变化亦可从认知负荷的角度解释分析,特定任务造成人体认知负荷的提高,使中枢神经及交感神经更加活跃,相应的,受其控制的汗腺分泌汗液活动加强,进而导致SCL升高。

SCR反应

皮肤电中由刺激事件引起的陡峭波峰称为皮肤电导反应(SCR),统计指标一般包括:SCR开始反应时间(Onset Time)、Peak Time峰值时间、Rise Time上升时间、Amp幅值、Half Deacy Time半衰减期、SCR反应分析结果可视化图表等。

图片

皮肤电导SCR解读

个体接收到刺激开始,皮电上升至峰值点,然后逐渐恢复至基线水平,上升时间反映了个体对刺激的响应程度,峰值测量了个体对刺激的唤醒强度,半衰期测量了个体情绪的自我恢复水平,可以用于对比产品设计、人员处理应急事件的能力以及任务分配的合理性等。

ER-SCR事件相关分析

由特定Event事件引起的SCR皮肤电导反应,称为ER-SCR。统计指标包括刺激反应个数(nSCR)、反应延迟时间(Latency)、反应幅值(Amplitude Summary)、反应水平(SCL)、平均半衰减期(AVerage Half Decay Time)、平均上升时间(AVerage Rise Time)、平均幅值(AVerage Amp)、平均反应水平(AVerage SCL)等。

图片

重要指标解读

  • nSCR:刺激事件之后出现SCR反应的个数,出现的越多,说明个体对刺激的反应越强烈。
  • Latency:刺激事件之后到出现反应的延迟时间,延迟时间较长表明刺激引起的反应较小,时间较短诱发的反应越强烈。
  • Amplitude Summary:SCR幅值,SCR是由刺激引起的反应,其幅度可作为内、外刺激强度的指标,强度越大,幅度越大,反应越强。
  • Half Decay Time:半衰减期,从SCR的最高点,到恢复到其一半水平的时间。时间越短,说明其应激恢复能力越强。

六、建议同步指标

图片

面部表情

面部表情是以一种非侵入性的方法来评估头位置和表情状态。结合AI图像识别技术,利用面部肌肉特征点位置计算和分类面部表情,可以自动分类基本表情、区分心理状态。可用于对情绪状态的研究,以及疲劳、分心、应激等状态的监测。

肌电数据

肌电用于监测人体运动产生的电能,反映神经肌肉兴奋性,评估神经与肌肉的功能状态。可用于肌肉工作的工效学分析、安全操作姿态分析、康复状态功能评价、疲劳识别以及肌电假肢控制等动作模式研究等。

心率变异性

心脏与自主神经系统活动紧密相关,通过ECG心电或PPG脉搏波信号的提取与数据分析,可以获得HRV指标衍生出的关于思想、情感和行为方面的信息,更深入的揭示个体的情绪、疲劳、应激等心理状态以及与被试行动和决策相关的生理水平的变化性。

脑电信号

脑电图(EEG)是一种神经成像技术,通过便携式传感器和放大器系统测量头皮表面产生的脑电活动。评估感知、认知行为和情感过程相关的大脑活动,揭示高级大脑功能动态,包括参与、动机、挫折、认知负荷,以及与刺激处理、行动准备和执行相关的进一步指标。

主观报告

任何实验都应该包含主观报告的数据收集阶段。可以直观的了解被试的主观感受,以及自我感知的注意力、动机和参与度水平等,进一步与多模态数据进行相互印证说明。

七、参考文献

[1]Lean, Y., & Shan, F. (2012). Brief review on physiological and biochemical evaluations of human mental workload.Human Factors and Ergonomics in Manufacturing & Service Industries.

[2]Nourbakhsh, N., Wang, Y., Chen, F., Calvo, R. A. (2012). Using galvanic skin response for cognitive load measurement in arithmetic and reading tasks. OzCHI’12 Proceedings of the 24th Australian Computer-Human Interaction Conference, 420-423.

[3]Lin, T., Imamiya, A., & Hu, W. H. (2007). An empirical study of relationships between traditional usability. Australasian Journal of Information Systems.

[4]Reimer, B., Mehler, B., Coughlin, J. F., Godfrey, K. M., Tan, C. (2009). An On-Road Assessment of the Impact of Cognitive Workload on Physiological Arousal in Young Adult Drivers. Proc Automotive ui’09, Acm, 115-118.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值