整除问题

博客围绕求解n!和a所有共同素因数,找出满足e1的幂p1、e2的幂p2且p1>=k*p2条件的最小k值展开。给出了具体的解题思路,并附上了C++代码,包括素数判断、n!和a的素因数分解等操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

解法是求出n!和a所有共同的素因数e1=e2;

其中e1的幂p1,e2的幂p2满足p1>=k*p2,找出所有共同素因数中满足条件的最小k;

思想还是挺难想出来的,毕竟不是用数学思维思考的人。。

#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;

int arr[1001];//0未知 1素数 2非素数
int b[1010];//计算a每个素因数的个数
int cnt[1010];//计算n!每个素因数的个数
int main(){
    memset(arr, 0, sizeof(arr));

    for (int i = 2; i < 1001;i++)
    {
        if (arr[i] == 1||arr[i]==2)
            continue;
        else{
            //int max = sqrt(i) + 1;
            arr[i]=1;
            /*for (int j = 2; j < max; j++)
                if (i%j == 0)
                {
                    a[i] = 2; break;
                }*/
        }
        if (arr[i] == 1)
        {
            for (int k = i; k*i <= 1000; k++)
                arr[k*i] = 2;
        }
    }
    int n,a;
    int j = 0;
    while (cin >> n>>a)
    {
        memset(b, 0, sizeof(b));
        memset(cnt, 0, sizeof(cnt));
        //对n!分解素因数
        for (int j = 2; j < 1001; j++)
        {
            int r = n;//暂存n值
            if (arr[j] == 1)
            {
                while (r)
                {
                    cnt[j] += r / j;
                    r = r / j;
                }
            }
        }
        
        int res = 0x1ffffff;
        //对a分解素因数
        for (int i = 2; i < a; i++)
        {
            if (arr[i] == 1 && a%i == 0)
            {
                int tmp = a;
                while (tmp%a==0)
                {
                    b[i]++;
                    tmp = tmp / i;
                }
            }
            if (b[i] == 0)continue;
            if (cnt[i] / b[i] < res)
                res = cnt[i] / b[i];
        }
        cout << res << endl;


    }
    
    return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值