基于原子搜索算法优化的极限学习机预测(MATLAB代码示例)

84 篇文章 ¥59.90 ¥99.00
本文探讨了如何使用原子搜索算法优化极限学习机(ELM)的预测性能,提供MATLAB实现步骤。从数据准备到模型训练、预测及参数优化,详细展示了如何结合ASA提升ELM模型效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

极限学习机(Extreme Learning Machine,ELM)是一种快速且高效的机器学习算法,广泛应用于模式识别和预测问题。原子搜索算法(Atomic Search Algorithm,ASA)是一种基于自然界原子结构的启发式优化算法,能够有效地搜索最优解。本文将介绍如何使用原子搜索算法优化极限学习机预测,并提供MATLAB代码示例。

首先,我们需要准备一些数据用于模型训练和测试。假设我们有一个包含N个样本的数据集,每个样本有D个特征和一个目标值。我们将数据集分为训练集和测试集,其中训练集用于构建极限学习机模型,测试集用于评估模型的预测性能。

接下来,我们将介绍如何使用MATLAB实现基于原子搜索算法优化的极限学习机预测。

步骤1:导入数据
首先,我们需要导入数据集。假设我们的数据集存储在一个名为data.csv的文件中,其中第一列到第D列是特征,最后一列是目标值。我们可以使用MATLAB的csvread函数来读取数据集。

data = csvread('data.csv'</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值