城市热岛实习

本实习通过热红外遥感技术,分析城市热岛强度与土地覆盖类型的关系。研究发现,居民区、工业用地与仓储及交通用地的热岛强度最高,而水体和农田的贡献较小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.实习目的

了解和熟悉利用热红外遥感技术监测城市热环境及其热效应

2.实习内容

   利用给定的地表温度图像和土地利用分类图像,计算该市的城市热岛强度,并统计各个强度等级的比例,最后分析城市热岛强度与土地覆盖类型之间的关系,并能给出简单解释。

3. 实习原理与步骤

3.1给出该城市地表温度的基本统计特征:平均值,标准差,最大和最小值;

Toolboxs/Regions of Interest/Band Threshold to ROI

 

 

Toolboxs/Raster Management/Masking/Build Mask

 

 

Toolboxs/Raster Management/Masking/Apply Mask

 

处理完之后,即可得到去除未分类区域的lst数据。然后打开quick stats

 

可以查看城市地表温度的基本统计特征:平均值,标准差,最大和最小值。

 

3.2以地表温度的一个标准差为间隔,将该城市的地表温度分成6级,并统计各个等级占的比例;

 

对掩膜处理过后的图像右键—New Raster Color Slice,在打开的窗体下点击

 

 

 

Qiuck stats打开可以查看到每一类的比例(有问题,因为其中仍有未被分类的权重)

 

 

 

 

3.3以土地利用分类图为基础,分析不同覆盖类型下的地表温度状况,从而解释城市热岛强度与土地覆盖类型之间的关系。

选择“分类图像(60)ok”的Classes右键Statistics for All Classes—选择lst。

打开右边的状态栏,然后输入对应且合适的x轴,y轴的范围值,如下图所示,将所有分类结果的光谱曲线直观的显示在图框中。

分析:从整体上来看,居民区、植被覆盖区以及工业用地与仓储的城市热岛强度起主导作用,热岛强度占比分别是19.23%,19.74%,15.94%。从每种土地利用类型的角度看,水体的温度主要集中在23-24℃,可以认为在这个温度范围内城市热岛的主要影响因素受水体影响;植被的温度主要集中在30-38℃,温度变化跨度范围大,可能和不同植被种类有关,该温度范围内植被覆盖为影响城市热岛强度的主导因素;居民区、工业用地与仓储和交通用地三者的温度都集中在40-44℃,其中居民地较多集中在41℃,工业用地与仓储和交通用地较多集中在43℃。农田的贡献率最小,不到1%,其他土地利用类型的累计贡献率也只有2%。居民区、工业用地与仓储和交通用地三者累计的贡献值达到45%以上,由此可以看出在这个温度范围内城市热岛强度最高。

 

### ArcGIS 中预处理投影图像以进行城市热岛效应分析的方 在ArcGIS中,为了有效开展城市热岛效应分析,需要对遥感影像进行一系列预处理操作。这些步骤通常包括校正、重采样、裁剪以及重新定义坐标系等内容。 #### 1. 数据准备与导入 首先,在ArcGIS环境中加载所需的遥感影像文件。如果使用的是GeoTIFF格式的多光谱航空影像,则可以参考《地理地貌数据集01:探索与应用》的相关说明来理解其结构和用途[^2]。确保所选影像覆盖目标城市的范围,并具备足够的分辨率用于后续分析。 #### 2. 定义或转换坐标系统 由于不同来源的数据可能采用不同的投影方式,因此统一所有输入数据至同一坐标参照系至关重要。这一步骤可以通过工具`Define Projection`完成已有数据坐标的确认;或者通过`Project Raster`实现从一种地图投影向另一种投影形式的变化过程。例如将WGS84地理坐标转成UTM带区投影能够减少因曲率造成的误差影响[^1]。 #### 3. 辐射定标与大气校正 对于卫星获取的地表反射率数值而言,原始DN值并不能直接反映真实物理量级情况。所以要执行辐射定标把数字计数转化为辐亮度单位后再做进一步的大气矫正得到表面离开温度(Surface Leaving Temperature),这是计算地表实际气温的基础前提之一[^3]。 #### 4. 图像增强与分类 经过前期准备工作之后,可运用各种滤波器改善视觉效果并突出显示特定特征如建筑物群落边界线等细节部分以便更精确地区分城区与其他自然环境要素之间的差异程度。接着利用监督/非监督分类区分出主要土地覆被类别——比如植被覆盖率较低而人工构筑物密集度较高的市中心地带往往对应着高温热点区域位置所在之处。 #### 5. 温差统计与制图表达 最后阶段就是基于前面获得的结果来进行定量评估工作了。创建栅格计算器表达式求取两个对比时间段内的平均温升幅度变化趋势图表展示出来供决策者审阅考量之需。同时也可以制作专题地图直观呈现哪些地方存在较为严重的UHIE现象从而指导未来新建项目选址避开敏感脆弱地段等方面做出贡献。 ```python import arcpy # 设置工作空间 arcpy.env.workspace = r"C:\path\to\your\data" # 执行 Define Projection 工具 inputRaster = "original_image.tif" spatialRef = arcpy.SpatialReference(32618) # UTM Zone 18N as an example arcpy.DefineProjection_management(inputRaster, spatialRef) # 进行 Project Raster 转换 outputProjRaster = "projected_image.tif" outCoordSys = arcpy.SpatialReference(3857) # Web Mercator Auxiliary Sphere arcpy.ProjectRaster_management(inputRaster, outputProjRaster, outCoordSys) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值