基于EtherCAT与ABP vNext 构建高可用、高性能的工业自动化平台

🚀 基于EtherCAT与ABP vNext 构建高可用、高性能的工业自动化平台 🚀



一、项目背景与目标 🌐

在工业自动化领域,实时通信和模块化架构是系统成功的关键因素。EtherCAT作为高速实时以太网协议,广泛应用于伺服控制、PLC等设备的通信场景。本文结合ABP vNext(v8.1.5)框架构建服务端管理平台,实现对EtherCAT网络节点的高效管理与数据交互,目标是搭建一套可复现、具备高可用与高性能的工业控制平台。


二、技术选型 🛠️

  • 通信协议:⚡ EtherCAT
  • 服务框架:📦 ABP vNext(v8.1.5)
  • 数据库:🐘 PostgreSQL 15.x
  • 缓存:🧠 Redis 7.x
  • 消息队列:📬 RabbitMQ 3.11.x(可选,用于事件分发)
  • 前端框架:🌐 Vue 3 + Vite + ElementPlus
  • 部署容器:🐳 Docker(多阶段构建) + 🔄 Nginx + 🐧 Linux Server

可选方案对比

  • gRPC vs MQTT:gRPC IDL 驱动、双向流、高性能;MQTT 轻量级发布/订阅,适合海量终端推送场景。
  • Redis vs Memcached:Redis 支持持久化、复杂数据结构和 Cluster;Memcached 纯内存、轻量,但仅 KV 缓存。

高可用组件示例

# Redis Cluster 初始化(6节点示例) 🗄️
version: "3.8"
services:
  redis-node-1:
    image: redis:7-alpine
    command: ["redis-server", "--cluster-enabled", "yes", "--cluster-config-file", "nodes.conf", "--port", "7000"]
  # … 同理配置 7001–7005 节点
# Patroni PostgreSQL 最小配置 🐳
scope: postgres-cluster
namespace: /service/
name: postgres-0
# ...

三、系统架构设计 🏗️

1. 总体架构图 🖼️

%% SoEM v1.6 / TwinCAT 3.1;gRPC Proto v3;心跳间隔 1s
graph LR
  EC[EtherCAT 设备] -->|SoEM/TwinCAT| DD[Device Daemon]
  DD -->|gRPC| AP[ABP 服务端]
  AP -->|REST| UI[前端(Vue+ElementPlus)]
  AP --> Redis
  AP --> Postgres

2. 模块划分 🧩

Device Daemon 数据采集流程 🔄
启动 Device Daemon
初始化 SoEM/TwinCAT
扫描 EtherCAT 从站
连接成功?
心跳检测(1s)
采集实时数据
gRPC 服务暴露
断线重连
Device Daemon EtherCAT ADS 集成示例 🖥️

在 Device Daemon 中,我们也可以直接用 .NET TwinCAT.Ads 与 EtherCAT 设备通信,示例代码如下:

// EthercatAdsService.cs
using System;
using TwinCAT.Ads;
using Volo.Abp.DependencyInjection;

namespace <Your.Namespace>
{
    public class EthercatAdsService : ISingletonDependency, IDisposable
    {
        private readonly TcAdsClient _ads;

        public EthercatAdsService(IConfiguration configuration)
        {
            _ads = new TcAdsClient();
            string amsNetId = configuration["Ads:AmsNetId"]
                              ?? throw new ArgumentException("请配置 Ads:AmsNetId");
            int port = int.Parse(configuration["Ads:Port"] ?? "851");
            _ads.Connect(amsNetId, port);
        }

        /// <summary>
        /// 读取指定变量(例如 PO2、IO input)
        /// </summary>
        public short ReadInputVariable(string varName)
        {
            // 使用 TwinCAT ADS 读一个 short 类型变量
            return (short)_ads.ReadAny(varName, typeof(short));
        }

        public void Dispose()
        {
            _ads?.Dispose();
        }
    }
}

说明:

  • 通过 configuration["Ads:AmsNetId"] 读取 TwinCAT AMS Net ID(如 “5.32.201.10.1.1”)。
  • ReadAny 方法可读取多种类型,示例中读取 short
  • 本服务注册为单例(ISingletonDependency),在模块中注入并复用。

  • Device Daemon(设备守护进程)

    • 多实例部署:🌐 Kubernetes Deployment + Service
    • 服务发现:🔍 Consul/etcd
    • 功能:采集实时数据、❤️‍🩹 心跳检测(1s)、🔄 断线重连、⚖️ 负载均衡
  • ABP 服务端

    • 模块化业务:📋 设备管理、报警系统、实时监控、命令下发
    • 💬 gRPC 调用 Device Daemon → 写入 Redis 缓存
    • ⏰ 定时任务:批量落库 PostgreSQL + 🔔 异常告警
  • 前端 UI

    • 🖥️ Vue 3 + ElementPlus 构建仪表盘
    • 🌐 RESTful API + 🔔 WebSocket 混合推送

四、ABP 服务端关键实现 🖥️

1. gRPC 客户端封装 🛡️

gRPC 请求与缓存流程 🛡️
收到客户端请求
缓存命中?
返回缓存数据
调用 GrpcDeviceClient.GetStatusAsync()
调用成功?
写入 Redis 缓存
返回最新数据
抛出异常 / 重试策略
public class GrpcDeviceClient : ISingletonDependency
{
    private readonly Device.DeviceClient _client;

    public GrpcDeviceClient(IConfiguration configuration)
    {
        var url = configuration["Grpc:DeviceUrl"]
                  ?? throw new ConfigurationErrorsException("Grpc:DeviceUrl 未配置");
        var channel = GrpcChannel.ForAddress(url, new GrpcChannelOptions
        {
            HttpHandler = new SocketsHttpHandler
            {
                PooledConnectionIdleTimeout = TimeSpan.FromMinutes(1)
            }
        });
        _client = new Device.DeviceClient(channel);
    }

    public async Task<DeviceStatusDto> GetStatusAsync(string deviceId)
    {
        using var cts = new CancellationTokenSource(TimeSpan.FromSeconds(2));
        try
        {
            var reply = await _client.GetStatusAsync(
                new DeviceRequest { DeviceId = deviceId },
                cancellationToken: cts.Token
            );
            return new DeviceStatusDto(reply);
        }
        catch (RpcException ex)
        {
            // 🔴 日志记录、或重试/降级
            throw new DeviceCommunicationException(deviceId, ex);
        }
    }
}

2. Redis 缓存使用(防击穿 & 雪崩) ❄️

public async Task<DeviceStatusDto> GetCachedStatusAsync(string deviceId)
{
    string key = $"device:status:{deviceId}";
    var options = new DistributedCacheEntryOptions
    {
        SlidingExpiration = TimeSpan.FromSeconds(5),
        AbsoluteExpirationRelativeToNow = TimeSpan.FromSeconds(10)
    };

    return await _distributedCache.GetOrAddAsync(
        key,
        () => _grpcClient.GetStatusAsync(deviceId),
        options
    );
}

说明

  • 使用 AbsoluteExpirationRelativeToNow 避免雪崩
  • 可结合 🔐 RedLock 或 🔄 双重检查

3. 模块化业务设计 📦

[DependsOn(
    typeof(AbpEventBusModule),
    typeof(AbpCachingModule),
    typeof(AbpBackgroundWorkersModule)
)]
public class DeviceModule : AbpModule
{
    public override void ConfigureServices(ServiceConfigurationContext context)
    {
        context.Services.AddSingleton<GrpcDeviceClient>();
        context.Services.AddScoped<DeviceService>();
    }
}

建议

  • Swagger:依赖 AbpSwashbuckleModule
  • 定时任务:依赖 AbpBackgroundWorkersModule

五、部署与高可用实践 📦

CI/CD 自动化部署流程 🚀

代码推送至 GitHub
GitHub Actions 触发
Restore & Build & Test
Tests 通过?
构建 Docker 镜像
推送到容器仓库
Kubernetes / Docker Compose 部署
通知开发者 / 失败告警

1. 多阶段 Docker 部署 🐳

FROM mcr.microsoft.com/dotnet/sdk:8.0 AS build
WORKDIR /src
COPY . .  
RUN dotnet restore  && dotnet publish -c Release -o /app --no-restore

FROM mcr.microsoft.com/dotnet/aspnet:8.0 AS runtime
WORKDIR /app
COPY --from=build /app .
ENV ASPNETCORE_ENVIRONMENT=Production
HEALTHCHECK --interval=30s --timeout=5s   CMD curl --fail http://localhost/health || exit 1
ENTRYPOINT ["dotnet", "YourProjectName.dll"]

2. Docker Compose 🐙

version: "3.8"
services:
  web:
    build: .
    ports:
      - "5000:80"
    environment:
      - Grpc__DeviceUrl=http://daemon:5001
    depends_on:
      redis:
        condition: service_healthy
      postgres:
        condition: service_healthy

  redis:
    image: redis:7-alpine
    command: ["redis-server", "--requirepass", "yourpassword"]
    healthcheck:
      test: ["CMD", "redis-cli", "-a", "yourpassword", "ping"]
      interval: 30s
      timeout: 5s

  postgres:
    image: postgres:15-alpine
    environment:
      - POSTGRES_PASSWORD=yourpassword
    healthcheck:
      test: ["CMD", "pg_isready", "-U", "postgres"]
      interval: 30s
      timeout: 5s
    volumes:
      - pgdata:/var/lib/postgresql/data

volumes:
  pgdata:

3. Nginx 反向代理与负载均衡 🔀

upstream backend {
    server app1:80;
    server app2:80;
    keepalive 16;
}

server {
    listen       80;
    server_name  example.com;

    add_header X-Frame-Options       SAMEORIGIN;
    add_header X-Content-Type-Options nosniff;

    location /api/ {
        proxy_pass         http://backend;
        proxy_http_version 1.1;
        proxy_set_header   Upgrade $http_upgrade;
        proxy_set_header   Connection keep-alive;
        proxy_set_header   Host $host;
        proxy_cache_bypass $http_upgrade;
        proxy_set_header   X-Real-IP $remote_addr;
        proxy_set_header   X-Forwarded-For $proxy_add_x_forwarded_for;
        proxy_read_timeout 60s;
    }

    listen 443 ssl;
    ssl_certificate     /etc/ssl/certs/fullchain.pem;
    ssl_certificate_key /etc/ssl/private/privkey.pem;
}

六、可观测性、容错与运维 🔍

容错与重试流程 🔁

发起 gRPC 调用
Polly 重试策略
是否超出重试次数?
再次调用 gRPC
调用成功?
返回结果
熔断 / 降级处理
异常日志 & 报警
  1. 🔗 链路追踪:OpenTelemetry → Jaeger/Zipkin
  2. 📊 指标监控:Prometheus + Grafana
  3. 🔄 重试 & 熔断:Polly 策略
  4. 📝 结构化日志:Serilog/Elastic Common Schema → Seq/ELK
  5. 🚀 CI/CD & Kubernetes
    • GitHub Actions 自动化流水线
    • k8s Deployment/Service/HPA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kookoos

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值