kafka限流导致spark写异常

背景

最近上线一个业务,大量数据从hive加工后,写入kaka。

规模:200+任务

spark任务并发数量:30

每个spark任务vocres:20

运行一段时间后,抛出异常

Caused by: org.apache.kafka.common.errors.TimeoutException: Expiring 77 record(s) for gcof-crm-sparkuserattrdata-live-ph-14:120001 ms has passed since batch creation

分析

kafka参数

根据异常信息,可以判断跟kafka参数设置有关,其他异常触发了参数设置上限,参考:Kafka producer TimeoutException: Expiring 1 record(s) - Stack Overflow

解决思路: 

  1. request.timeout.ms 太小,加大两次包发送间隔
  2. kafka.batch.size 太大,减小每次发送包大小,增加发送频次

kafka限流

之所以触发两个参数,原来是kafka集群设置了 producer 限流,可以通过观察 kafka 集群监控,及生产端设置的 kafka 参数判断。

kafka 生产端设置的 kafka 限流参数:

'kafka.client.id' : xxx
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值