决策树和随机森林

决策树(Decision Tree)

原理

决策树是一种树形结构的模型,用于分类和回归任务。每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,每个叶节点代表一个类别或回归值。决策树通过递归地将数据集划分成较小的子集,构建一棵树来做出预测。

决策树的构建过程通常使用某种分裂准则,如信息增益、基尼指数或均方误差,来选择最佳的属性进行数据划分。

公式

常用的决策树分裂准则包括:

  1. 信息增益(Information Gain)

其中:

  • S 是当前数据集。
  • A 是待分裂的属性。
  • Sv 是在属性 A 上取值为 v 的数据子集。
  1. 基尼指数(Gini Index)

其中 pi 是第 i 类的样本比例。

生活场景应用的案例

信用评分:决策树可以用于银行的信用评分系统。假设我们有一个包含客户信息的数据集,如年龄、收入、信用历史等特征。我们可以使用决策树模型来预测客户是否有信用风险。

案例描述

假设我们有一个包含客户信息的数据集,包括以下特征:

  • 年龄
  • 年收入
  • 信用历史(如是否有逾期还款记录)
  • 已贷款数量

我们希望通过这些特征预测客户是否有信用风险。我们可以使用决策树模型进行训练和预测。训练完成后,我们可以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值