支持向量机(SVM, Support Vector Machine)
原理
支持向量机是一种监督学习模型,适用于分类和回归任务。SVM 的目标是找到一个能够最大化类别间间隔的超平面,以便更好地对数据进行分类。对于非线性数据,SVM 通过核技巧将数据映射到高维空间,使得在该空间中可以找到一个线性可分的超平面。
公式
SVM 的核心思想是找到一个超平面使得两类数据点之间的间隔最大化。给定训练数据集 (xi,yi),其中 xi 是特征向量,yi 是类别标签(+1 或 -1),SVM 通过求解以下优化问题来找到最优的超平面:
满足约束条件:
其中,w 是超平面的法向量,b 是偏置。
对于非线性数据,SVM 使用核函数 K(xi,xj) 将数据映射到高维空间。常用的核函数包括线性核、径向基核(RBF 核)和多项式核等。
生活场景应用的案例
邮件分类:SVM 可以用于电子邮件的垃圾邮件分类。假设我们有一个包含电子邮件内容的数据集,并使用特征如词频、长度等。我们可以使用 SVM 模型来预测某封邮件是否为垃圾邮件。
案例描述
假设我们有一个包含电子邮件内容和标签的数据集,包括以下特征:
- 词频(Term Frequency)
- 词汇量(Vocabulary Size)
- 邮件长度(Email Length)
- 特定关键词出现次数(Keyword Occurrence)
我们希望通过这些特征预测某封邮件是否为垃圾邮件。我们可以使用 SVM 模型进行训练和预测。训练完成后,我们可以使用模型来预测新邮件是否为垃圾邮件,并评估模型的性能。
代码解析
下面是一个使用 Python 实现上述垃圾邮件分