基于FPN与MobileNet优化的水下目标检测:从海参难题到模型性能跃升的实战改进教程

在这里插入图片描述

比赛记录和心得 Day2:从调试困境到策略优化

一、吐槽:调试路上的“坑”与时间管理

今天被网课占据了大部分时间,原本计划优化模型结构,结果却陷入了编译问题的泥潭。

问题重现

  • 原代码基于Linux环境开发,setup.py文件中依赖的库(如pycocotools)在Windows下需要手动修改路径和编译选项。
  • 尝试用conda创建虚拟环境、修改Makefile文件,甚至直接在Colab上运行,但因网络限制和数据传输效率低下,最终放弃。

教训总结

  1. 环境配置前置:比赛初期应优先确认代码的跨平台兼容性,避免后期重复造轮子。
  2. 备选方案:若本地调试困难,可优先使用云端GPU(如Kaggle、Google Colab),但需提前规划数据上传和依赖安装流程。

临时解决方案

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值