比赛记录和心得 Day2:从调试困境到策略优化
一、吐槽:调试路上的“坑”与时间管理
今天被网课占据了大部分时间,原本计划优化模型结构,结果却陷入了编译问题的泥潭。
问题重现:
- 原代码基于Linux环境开发,
setup.py
文件中依赖的库(如pycocotools
)在Windows下需要手动修改路径和编译选项。 - 尝试用
conda
创建虚拟环境、修改Makefile
文件,甚至直接在Colab上运行,但因网络限制和数据传输效率低下,最终放弃。
教训总结:
- 环境配置前置:比赛初期应优先确认代码的跨平台兼容性,避免后期重复造轮子。
- 备选方案:若本地调试困难,可优先使用云端GPU(如Kaggle、Google Colab),但需提前规划数据上传和依赖安装流程。
临时解决方案: