文末含资料链接和视频讲解!RK3588平台部署实战:YOLOv8-Pose人体姿态估计模型从PT到RKNN的全流程优化指南

一、平台与模型选型分析

1.1 瑞芯微RK3588硬件特性

核心参数

  • CPU:4×Cortex-A76 + 4×Cortex-A55(8nm制程)

  • NPU:6TOPS神经网络算力(支持INT8/FP16混合精度)

  • 内存:LPDDR4x 8GB(带宽42.7GB/s)

  • 视频解码:8K@60fps H.265硬解码

部署优势

  • 功耗仅10W,适合移动场景

  • 集成4K显示输出接口

  • 支持PCIe 3.0高速扩展

1.2 YOLOv8-Pose模型特性

技术演进

  • 架构升级:基于YOLOv8改进的关键点检测版本

  • 关键点数:支持17/25/34点人体姿态估计

  • 精度提升:COCO数据集AP达到68.3%

与前代对比

| 特性 | YOLOv5-Pose | YOLOv8-Pose |

|--

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值