文末含资料链接和视频讲解!
文章目录
在当今人工智能飞速发展的时代,将复杂的深度学习模型部署到边缘计算设备已成为主流趋势。这仅能降低云计算成本,还能有效提升数据处理的实时性和隐私性。其中,以RK3588为代表的边缘AI芯片凭借其强大的NPU(神经网络处理单元)性能,在嵌入式领域占据了一席之地。然而,要将像YOLOv8-Pose这样先进的姿态估计模型高效地运行在RK3588平台上,并非简单的“即插即用”过程。这往往涉及到对模型结构的精细调整与优化,以适配NPU的计算特性。
本文旨在为您提供一份极具深度和实战价值的教程,详细剖析YOLOv8-Pose模型从PyTorch原生格式(.pt)到RK3588平台友好的ONNX格式(.onnx)的转换过程。我们将深入探讨为何需要对模型输出层进行裁剪与重构,以及如何在CPU端进行高效的后处理,最终实现模型在RK3588设备上的流畅运行。通过本文的学习,您不仅能掌握具体的代码修改技巧,更能理解背后的设计哲学与优化策略,为您的边缘AI部署之路扫清障碍。让我们一起踏上这场充满挑战与收获的AI模型优化之旅吧!🏃♂️💨
一、模型导出ONNX结构对比:为何要“化繁为简”? 🤔
在将深度学习模型部署到特定硬件平台时,模型格