f15_Trading Strategies2_sma_AAPL_Log return_EUR_OLS regress_df highlight_Lagrang_GaussianNB_DNNClass

本文探讨了基于简单移动平均线(SMA)的算法交易策略,并通过向量化回测进行验证。同时,文章涉及了线性回归、聚类和深度学习在交易策略中的应用,如高斯朴素贝叶斯、支持向量机和深度神经网络(DNN)。通过随机训练测试拆分评估策略,展示了DNN在样本外的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[T]hey were silly[ˈsɪli]傻瓜,笨蛋 enough to think you can look at the past to predict the future. —The Economist

     This chapter is about the vectorized backtesting of algorithmic trading strategies. The term algorithmic trading strategy is used to describe any type of financial trading strategy that is based on an algorithm designed to take long, short, or neutral positions in financial instruments on its own without human interference. A simple algorithm, such as “altering every five minutes between a long and a neutral position in the stock of Apple, Inc.,” satisfies this definition. For the purposes of this chapter and a bit more technically, an algorithmic trading strategy is represented by some Python code that, giv

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LIQING LIN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值