Digital image processing-点运算

最近在学斯坦福的数字图像处理,感觉真的无论是课件还是习题都太棒了,想记录下自己这一段的成长历程。

1.针对降噪的带噪图像相加

这里主要用了这样的一个定理:对M副加性噪声图像进行平均,可以使图像的平方信噪比提高M倍。
证明过程如下:
Di(x,y)=S(x,y)+Ni(x,y) where E{ Ni(x,y)}=0 D_{i}(x, y)=S(x, y)+N_{i}(x, y) \text { where } E\left\{N_{i}(x, y)\right\}=0 Di(x,y)=S(x,y)+Ni(x,y) where E{ Ni(x,y)}=0
其中信噪比为
P(x,y)=S2(x,y)E{ N2(x,y)} P(x, y)=\frac{S^{2}(x, y)}{E\left\{N^{2}(x, y)\right\}} P(x,y)=E{ N2(x,y)}S2(x,y)
D‾(x,y)=1M∑i=1M[S(x,y)+Ni(x,y)]P‾(x,y)=S2(x,y)E{ 1M2[∑i=1MNi(x,y)]2} \begin{aligned} \overline{D}(x, y)=& \frac{1}{M} \sum_{i=1}^{M}\left[S(x, y)+N_{i}(x, y)\right] \\ \overline{P}(x, y)=& \frac{S^{2}(x, y)}{E\left\{\frac{1}{M^{2}}\left[\sum_{i=1}^{M} N_{i}(x, y)\right]^{2}\right\}} \end{aligned} D(x,y)=P

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值