超详细!DeepSeek本地搭建部署、搭建知识库及智能体教程

超详细!DeepSeek本地搭建部署、搭建知识库及智能体教程

一、引言

在人工智能飞速发展的当下,大模型的应用越来越广泛。DeepSeek作为一款强大的模型,能够在本地进行搭建部署,从而实现个性化的知识库构建以及智能体应用,这为开发者和爱好者提供了极大的便利。本文将以详细的图文步骤,带领大家一步步完成DeepSeek的本地搭建部署、知识库搭建以及智能体的创建,让你轻松掌握这一前沿技术。

二、DeepSeek本地搭建部署

(一)环境准备

  1. 硬件要求:一台具有较强计算能力的电脑,建议配备NVIDIA GPU,如RTX 30系列及以上,以加速模型运行。同时,至少8GB内存,推荐16GB或更高。
  2. 软件要求
    • 操作系统:Windows 10/11或Ubuntu 18.04及以上版本。
    • Python环境:安装Python 3.8及以上版本。可以从Python官网下载对应版本的安装包进行安装,安装过程中记得勾选“Add Python to PATH”选项。
    • CUDA和cuDNN:如果使用NVIDIA GPU,需要安装对应版本的CUDA和cuDNN。CUDA可从NVIDIA官网下载,根据自己的显卡型号和操作系统选择合适的版本。cuDNN需要注册NVIDIA开发者账号后从cuDNN官网下载,下载完成后解压并将文件复制到CUDA安装目录对应的文件夹中。

(二)安装依赖库

  1. 创建一个新的虚拟环境(可选但推荐):
    • 在命令行中输入以下命令安装virtualenv(如果未安装):
pip install virtualenv
- 创建虚拟环境,假设环境名为`deepseek_env`:
virtualenv -p python3.8 deepseek_env
- 在Windows系统中激活虚拟环境:
deepseek_env\Scripts\activate
- 在Ubuntu系统中激活虚拟环境:
source deepseek_env/bin/activate
  1. 安装DeepSeek所需的依赖库。进入项目目录(如果没有项目目录,先创建一个),在该目录下创建一个requirements.txt文件,内容如下:
torch
transformers
sentencepiece

然后在命令行中运行以下命令安装依赖:

pip install -r requirements.txt

安装过程可能需要一些时间,取决于网络速度。

(三)下载DeepSeek模型

  1. 访问DeepSeek官方网站或其官方开源仓库(如在GitHub上),找到模型下载链接。模型文件较大,可能需要耐心等待下载完成。
  2. 将下载好的模型文件解压到项目目录下的一个新文件夹,例如deepseek_model

(四)运行DeepSeek模型

  1. 在项目目录下创建一个Python脚本,例如run_deepseek.py,内容如下:
import torch
from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained('deepseek_model')
model = AutoModel.from_pretrained('deepseek_model')

text = "你好,DeepSeek"
inputs = tokenizer(text, return_tensors='pt')
outputs = model(**inputs)
print(outputs)
  1. 在命令行中运行该脚本:
python run_deepseek.py

如果一切顺利,你将看到模型输出的结果,这表明DeepSeek模型已在本地成功部署运行。

三、搭建知识库

(一)数据收集

  1. 确定知识库的主题,例如是关于技术文档、学术论文还是产品介绍等。
  2. 根据主题收集相关的数据,可以从网站、文档、数据库等多种来源获取。例如,如果是搭建技术知识库,可以从技术论坛、开源项目文档等地方收集文本资料。

(二)数据预处理

  1. 文本清洗:使用Python的re库等工具去除文本中的噪声,如HTML标签、特殊字符、多余的空格等。示例代码如下:
import re

def clean_text(text):
    text = re.sub('<.*?>', '', text)  # 去除HTML标签
    text = re.sub('[^a-zA-Z0-9\s]', '', text)  # 去除特殊字符
    text = re.sub('\s+',' ', text).strip()  # 去除多余空格并修剪字符串
    return text
  1. 文本分割:将长文本分割成合适长度的段落或句子,以便后续处理。可以使用nltk库进行句子分割,示例代码如下:
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize

def split_text(text):
    sentences = sent_tokenize(text)
    return sentences
  1. 向量化:使用词向量模型(如Word2Vec或FastText)或预训练的语言模型(如BERT)将文本转换为向量表示。这里以sentence-transformers库为例,对文本进行向量化:
from sentence_transformers import SentenceTransformer

model = SentenceTransformer('all-MiniLM-L6-v2')
texts = ["这是一个示例句子", "另一个示例句子"]
embeddings = model.encode(texts)
print(embeddings)

(三)存储知识库

  1. 选择合适的数据库存储向量化后的文本和对应的原始文本。常用的选择有Elasticsearch、Faiss等。这里以Faiss为例进行说明。
  2. 安装Faiss库:
pip install faiss - gpu
  1. 创建Faiss索引并存储数据:
import faiss
import numpy as np

# 假设embeddings是之前生成的文本向量,texts是对应的原始文本
d = embeddings.shape[1]  # 向量维度
index = faiss.IndexFlatL2(d)
index.add(embeddings)

# 可以将原始文本存储在一个列表中,通过索引对应
text_list = texts

这样,知识库就搭建完成,后续可以通过向量检索从知识库中获取相关信息。

四、创建智能体

(一)智能体框架选择

  1. 这里我们选择LangChain框架来创建智能体,它提供了丰富的工具和接口,方便与各种模型和数据源集成。
  2. 安装LangChain库:
pip install langchain

(二)智能体配置

  1. 配置智能体使用的模型和知识库。在项目目录下创建一个新的Python脚本,例如agent_setup.py,内容如下:
from langchain.llms import HuggingFacePipeline
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.prompts import StringPromptTemplate
from langchain import SerpAPIWrapper, LLMChain
from langchain.schema import AgentAction, AgentFinish
import re
from langchain.vectorstores import FAISS
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.chains import RetrievalQA
from transformers import pipeline

# 加载本地DeepSeek模型作为LLM
pipe = pipeline(
    "text-generation",
    model='deepseek_model',
    tokenizer='deepseek_model',
    max_length=100
)
llm = HuggingFacePipeline(pipeline=pipe)

# 加载知识库
embeddings = SentenceTransformerEmbeddings(model_name='all-MiniLM-L6-v2')
vectorstore = FAISS.load_local('faiss_index', embeddings)
retriever = vectorstore.as_retriever()
qa_chain = RetrievalQA.from_chain_type(llm, retriever=retriever)

# 定义工具
tools = [
    Tool(
        name="KnowledgeBase",
        func=qa_chain.run,
        description="Useful for answering questions related to the specific knowledge in the database. Input should be a question."
    )
]

# 定义提示模板
template = """You are a helpful AI assistant. You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about which tool to use
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

Begin!
Question: {input}"""

class CustomOutputParser(AgentOutputParser):
    def parse(self, llm_output):
        if "Final Answer:" in llm_output:
            return AgentFinish(
                return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
                log=llm_output
            )
        regex = r"Action: (.*?)\nAction Input:[\s]*(.*)"
        match = re.search(regex, llm_output)
        if not match:
            raise ValueError(f"Could not parse LLM output: `{llm_output}`")
        action = match.group(1).strip()
        action_input = match.group(2)
        return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)

prompt = StringPromptTemplate(
    template=template,
    tools=tools,
    input_variables=["input"]
)

output_parser = CustomOutputParser()

llm_chain = LLMChain(llm=llm, prompt=prompt)
agent = LLMSingleActionAgent(
    llm_chain=llm_chain,
    output_parser=output_parser,
    tools=tools,
    verbose=True
)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)

(三)运行智能体

agent_setup.py脚本所在目录的命令行中运行以下代码,测试智能体:

question = "关于知识库中的某个问题"
agent_executor.run(question)

智能体将根据输入的问题,利用知识库中的信息和DeepSeek模型进行回答。

五、总结

通过以上详细的步骤,我们完成了DeepSeek的本地搭建部署、知识库的搭建以及智能体的创建。这一过程不仅让我们深入了解了大模型的应用,还为我们开发个性化的智能应用奠定了基础。在实际应用中,可以根据具体需求进一步优化模型、知识库和智能体的性能和功能。希望本文能帮助大家快速上手DeepSeek相关技术,开启属于自己的人工智能创新之旅。

内容概要:该文档《DeepSeek新手宝典:从入门到精通的超详细指南.pdf》,首先概述了DeepSeek这款新兴的人工智能工具的基础信息和发展意义。它具备强大的语言处理能力和多场景的应用优势,能够广泛用于代码辅助、问答服务、创意内容生成以及数据分析等多个方面。接下来,文中详尽地讲解了如何注册、登录并熟练运用该软件的各种功能模块。其中包括但不限于输入框、对话记录及功能菜单的具体操作方法;而后重点展示了四大核心功能——智能问答、编程辅助、创意生成和数据分析的应用实例,帮助用户更直观了解DeepSeek的强大能力与潜在价值;同时也分享了一些高效的使用技巧以及注意事项。最后则简述了关于持续深化学习的方向及对未来发展的期待。 适合人群:广大科技爱好者、研究人员、学生群体及相关从业者。尤其适用于希望快速掌握新型AI工具操作方式以辅助日常工作学习的个人及团队。 使用场景及目标:帮助使用者充分利用DeepSeek提供的各项智能化服务,提高各类工作任务效率的同时激发创造性思维;具体场景如自动化脚本生成、快速查询专业知识、自动生成文案、制作数据报表分析等。此外,指导用户构建个性化使用习惯以适应自身独特的需求偏好,并鼓励用户加入相关社区开展交流分享,共同促进技术进步与发展。 其他说明:为了让更多人了解到这款优秀工具所带来的可能性,《DeepSeek新手宝典》特别强调了安全性和合理性的规范指导,并表达了对AI未来发展积极乐观的态度。
### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值