[tensorflow]argmax()函数

本文详细介绍了 TensorFlow 中的 tf.argmax 函数的使用方法及其参数含义。通过具体实例展示了如何利用该函数来获取张量中最大值的索引,包括在不同维度上的操作,并解释了 n 参数的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先 import tensorflow as tf

tf.argmax(tenso,n)函数会返回tensor中参数指定的维度中的最大值的索引或者向量。当tensor为矩阵返回向量,tensor为向量返回索引号。其中n表示具体参数的维度。

以实际例子为说明:

import tensorflow as tf  
import numpy as np  
test = [[1, 6, 7], [2, 5, 8], [3, 4, 9]]
with tf.Session() as sess:  
    print(sess.run(tf.argmax(test, 0)))  #输出:array([2, 0, 2]
    print(sess.run(tf.argmax(test, 1)))  #输出:array([2, 2, 2]
n=0代表列的比较,如下:
    print(sess.run(tf.argmax(test, 0))) 指的是
    test[0] = array([1, 6, 7])
    test[1] = array([2, 5, 8])
    test[2] = array([3, 4, 9])
                   #[2, 0, 2]=(第一列test[0][1]最大,第二列test[2][1]最大,第三列test[2][2]最大)   			
n=1代表行的比较,如下:
    print(sess.run(tf.argmax(test, 1))) 指的是
    test[0] = array([1, 6, 7]) #[2]=(第一行test[0][2]最大)
    test[1] = array([2, 5, 8]) #[2]=(第二行test[1][2]最大)
    test[2] = array([3, 4, 9]) #[2]=(第三行test[2][2]最大)	

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值