有意向获取代码,请转文末观看代码获取方式~
展示出图效果
1 CEEMD信号分解算法
CEEMD 分解又叫互补集合经验模态分解,英文全称为 Complementary Ensemble Empirical Mode Decomposition。
CEEMD是对EEMD的改进,它在EEMD的基础上引入了一个自适应的扩展方法,可以更好地解决EMD/EEMD中存在的模态混叠问题。CEEMD的主要步骤如下:
-
对原始信号进行若干次随机噪声扰动,得到多个噪声扰动数据集。
-
对每个噪声扰动数据集进行EMD分解,得到多个EMD分解集合。
-
对于每个EMD分解集合,通过一个自适应的扩展方法,将每个局部模态函数分配到它所属的固有模态函数上,消除模态混叠的影响。
-
将每个扩展后的 EMD 分解集合的对应分量进行平均,得到最终的 CEEMD 分解结果。 CEEMD 分解具有良好的局部性和自适应性,能够更准确地分解信号,同时避免了 EEMD 中的模态混叠问题。因此,CEEMD 在信号处理、图像处理和模式识别等领域也得到了广泛的应用。
<