NMS(Non-Maximum Suppression)非极大值抑制
这项技术不仅在YOLO模型中大放异彩,并且是在面试中高频题,下面就开始对NMS技术的讲解
在YOLO模型中NMS会删除同一目标的冗余边框,从而留下目标相对完美的检测边框。
(1)首先对所有的边框进行汇总;
(2)保留置信度较大的边框best;
(3)以best为基准,之后的边框会与best进行对比,如果IOU大于设定阈值,将其删除。(因为相当于同一目标出现多个边框);
(4)之后以best之后的边框置信度最大的值作为best2,以best2为基准,之后的边框与best2进行IOU计算,删除大于设定阈值的边框;
(5)之后会重复以上过程,直至候选框清空;
(6)针对目标只剩下一个置信度高的边框。
除此之外,还可以通过限定置信度来决定保留的边框。
ps:
可能会有的疑问是如果是IOU较低是不是进行了保留?
是,但是通过设置的高置信度,那么这些虽然IOU低,并且保留的边框,会随着设置的置信度而删除。
参考:
图片来源:csdn海洋之心