2025年自学AI大模型从入门到精通,顺序千万别弄反了

大模型目前在可以说正处于一种“炙手可热”的状态,吸引了很多人的关注和兴趣,也有很多新人小白想要学习大模型技术,转战AI领域,以适应未来的大趋势,寻求更有前景的发展!

2025最新大模型学习路线

一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。

一、大模型基础篇

第一阶段基础篇:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。

1、大语言模型的基本情况介绍

  • 初识大模型

  • OpenAI模型的发展历程

  • 主流国产大模型

  • 大模型赋能行业分析

  • 未来展望:大模型的趋势与挑战

2、大模型核心原理

  • 理解大模型成功的背后

  • 理解生成式模型与大语言模型

  • 大模型应用实例与Prompt使用技巧

  • Transformer架构解析

  • 关键技术解析:预训练、SFT、RLHF

  • 交互式讨论:当前大模型应用场景

3、提示工程

  • AI开发环境

  • 提示工程基础

  • 提示工程进阶

  • 实战项目:基于提示工程的前端界面代码生成实战

在这里插入图片描述

二、大模型进阶篇

第二阶段进阶篇:进阶篇是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

1、RAG

  • 检索增强生成

  • Naive RAG Pipeline

  • 实战项目:基于向量检索的RAG实现公司HR制度智能问答系统项目

2、Advanced-RAG

  • Advanced RAG前沿Paper解读

  • 商业化RAG分析与优化方案实践

3、RAG项目评估

  • RAG效果评估

4、RAG热门项目精讲

  • RAGFlow应用分析

  • FastGPT应用分析

  • QAnything应用分析

  • LangChain-chatchat应用分析

  • GraphRAG应用分析

  • 实战:基于Dify实现K12教育行业智能助教

    在这里插入图片描述

大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。

5、Langchain

  • 什么是开发框架

  • 什么是langchain、它的意义是什么?

  • LangChain的核心组件

  • 实战项目:基于LangChain的企业知识库实战

6、LlamaIndex

  • LlamaIndex是什么

  • LlamaIndex的优势与劣势

  • LlamaIndex与RAG检索增强联合应用实践

  • LlamaIndex与LangChain对比分析

7、Agent

  • Agents关键技术分析

  • Funcation Calling

  • Agent认知框架

  • 实战项目:命理Agent机器人实战

  • 多Agent系统

  • 实战项目:多智能体协同代码生成应用

8、可视化框架

  • GPTS

  • Coze扣子

  • Dify

9、项目实战

  • 实战项目:公司HR制度智能问答系统商业化实战

  • 实战项目:智能电商客服系统

在这里插入图片描述

三、大模型实战篇

第三阶段实战篇:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

1、Transformer

  • Transformer结构理解

  • 理解Self-Attention

  • 理解Encoder与Decoder

  • Multi-head Attention

  • 不同Decoding方法

2、Open source(开源)

  • 私有化大模型的必要性

  • 国外开源模型生态

  • 国内开源模型生态

  • 开源模型的三种评估方式

  • 开源模型应用场景与局限性

  • 实战案例:ChatGLM大模型在Ollama上的部署

3、Fine-Tuning(微调)

  • 模型微调简介

  • 如何选择合适的基座模型

  • 数据集的收集与预处理

  • 数据集的收集与预处理

  • 微调训练框架的选择

4、PEFT fine-turning

  • PEFT 主流技术介绍

  • LoRA 低秩适配微调

  • LoRA 的改进和扩展

  • 实战案例:ChatGLM在医疗领域的LoRA微调

5、Quantlzation(量化)

  • 模型显存占用与量化技术简介

  • Transformers 原生支持的大模型量化算法

  • AWQ:激活感知权重量化算法

  • GPTQ:专为 GPT 设计的模型量化算法

  • 模型量化对比实例

  • 实战案例:ChatGLM的量化演示

6、Application Engineering(应用工程)

  • 大模型应用工程

  • 大模型AI工程平台 (MoPaaS)

  • 打造私有化模型 — 智能时代企业关键的 IP

  • 私有化大模型部署LLaMA3.1 项目实践

7、multimodal(多模态)

  • 什么是多模态模型

  • 多模态的应用场景

  • 图像生成技术概述

  • DALLE-3与Midjourney

  • Stable Diffusion与ControlNet

  • 语音生成技术概述

  • 主流TTS技术剖析

  • 案例:Video-LLaVA与多模态图像视频识别

8、微调大实战:基于LLaMA3.1-8B做医疗领域微调大实战

  • 真实的医疗数据集

  • 数据清洗技术应用

  • 开源大模型做基座

  • LoRA微调应用

  • AdaLoRA微调应用

  • LongLoRA微调应用

图片

整个大模型学习路线基础篇主要是对大模型的理论基础、核心原理以及提示词的学习掌握;而进阶实战篇更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。

四、学习书籍文档

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)

在这里插入图片描述

五、学习视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。

在这里插入图片描述

六、项目实战源码

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

七、大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

图片

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码,免费领取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小模型

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值