大模型目前在可以说正处于一种“炙手可热”的状态,吸引了很多人的关注和兴趣,也有很多新人小白想要学习大模型技术,转战AI领域,以适应未来的大趋势,寻求更有前景的发展!
2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
一、大模型基础篇
第一阶段基础篇:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
1、大语言模型的基本情况介绍
-
初识大模型
-
OpenAI模型的发展历程
-
主流国产大模型
-
大模型赋能行业分析
-
未来展望:大模型的趋势与挑战
2、大模型核心原理
-
理解大模型成功的背后
-
理解生成式模型与大语言模型
-
大模型应用实例与Prompt使用技巧
-
Transformer架构解析
-
关键技术解析:预训练、SFT、RLHF
-
交互式讨论:当前大模型应用场景
3、提示工程
-
AI开发环境
-
提示工程基础
-
提示工程进阶
-
实战项目:基于提示工程的前端界面代码生成实战
二、大模型进阶篇
第二阶段进阶篇:进阶篇是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
1、RAG
-
检索增强生成
-
Naive RAG Pipeline
-
实战项目:基于向量检索的RAG实现公司HR制度智能问答系统项目
2、Advanced-RAG
-
Advanced RAG前沿Paper解读
-
商业化RAG分析与优化方案实践
3、RAG项目评估
-
RAG效果评估
4、RAG热门项目精讲
-
RAGFlow应用分析
-
FastGPT应用分析
-
QAnything应用分析
-
LangChain-chatchat应用分析
-
GraphRAG应用分析
-
实战:基于Dify实现K12教育行业智能助教
大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
5、Langchain
-
什么是开发框架
-
什么是langchain、它的意义是什么?
-
LangChain的核心组件
-
实战项目:基于LangChain的企业知识库实战
6、LlamaIndex
-
LlamaIndex是什么
-
LlamaIndex的优势与劣势
-
LlamaIndex与RAG检索增强联合应用实践
-
LlamaIndex与LangChain对比分析
7、Agent
-
Agents关键技术分析
-
Funcation Calling
-
Agent认知框架
-
实战项目:命理Agent机器人实战
-
多Agent系统
-
实战项目:多智能体协同代码生成应用
8、可视化框架
-
GPTS
-
Coze扣子
-
Dify
9、项目实战
-
实战项目:公司HR制度智能问答系统商业化实战
-
实战项目:智能电商客服系统
三、大模型实战篇
第三阶段实战篇:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
1、Transformer
-
Transformer结构理解
-
理解Self-Attention
-
理解Encoder与Decoder
-
Multi-head Attention
-
不同Decoding方法
2、Open source(开源)
-
私有化大模型的必要性
-
国外开源模型生态
-
国内开源模型生态
-
开源模型的三种评估方式
-
开源模型应用场景与局限性
-
实战案例:ChatGLM大模型在Ollama上的部署
3、Fine-Tuning(微调)
-
模型微调简介
-
如何选择合适的基座模型
-
数据集的收集与预处理
-
数据集的收集与预处理
-
微调训练框架的选择
4、PEFT fine-turning
-
PEFT 主流技术介绍
-
LoRA 低秩适配微调
-
LoRA 的改进和扩展
-
实战案例:ChatGLM在医疗领域的LoRA微调
5、Quantlzation(量化)
-
模型显存占用与量化技术简介
-
Transformers 原生支持的大模型量化算法
-
AWQ:激活感知权重量化算法
-
GPTQ:专为 GPT 设计的模型量化算法
-
模型量化对比实例
-
实战案例:ChatGLM的量化演示
6、Application Engineering(应用工程)
-
大模型应用工程
-
大模型AI工程平台 (MoPaaS)
-
打造私有化模型 — 智能时代企业关键的 IP
-
私有化大模型部署LLaMA3.1 项目实践
7、multimodal(多模态)
-
什么是多模态模型
-
多模态的应用场景
-
图像生成技术概述
-
DALLE-3与Midjourney
-
Stable Diffusion与ControlNet
-
语音生成技术概述
-
主流TTS技术剖析
-
案例:Video-LLaVA与多模态图像视频识别
8、微调大实战:基于LLaMA3.1-8B做医疗领域微调大实战
-
真实的医疗数据集
-
数据清洗技术应用
-
开源大模型做基座
-
LoRA微调应用
-
AdaLoRA微调应用
-
LongLoRA微调应用
整个大模型学习路线基础篇主要是对大模型的理论基础、核心原理以及提示词的学习掌握;而进阶实战篇更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
四、学习书籍文档
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
五、学习视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
六、项目实战源码
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
七、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包
,有需要的小伙伴可以微信扫描下方二维码
,免费领取