【Detectron2-Panoptic Segmentation训练自定义数据集】利用Detectron2全景分割模型训练自定义数据集

本文介绍了如何利用Detectron2在自定义数据集上训练全景分割模型。首先,安装依赖项和Detectron2,然后注册自定义的COCO格式数据集,接着设置训练参数并开始训练,最后展示训练过程中的指标变化和推理结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Detectron2提供了全景分割Panopic Segmentation模型在coco2017全景分割数据集上的训练途径,遗憾的是官方文档并没有提供在自定义数据集上训练全景分割模型的说明,这个事实已经在Detectron2的GitHub Issues中的一篇帖子train Panoptic Segmentation model on custom dataset内得到了印证→_→ 

 本文上接自定义数据集制作&coco instance→coco panoptic数据集格式转换,基于colab介绍通过Detectron2的全景分割模型训练自定义数据集的步骤。

(本文部分参考来自roboflow内计算机视觉模型库Detectron2 colab Notebook教程,以及Detectron2的GitHub Issues中zhangliyun9120的评论。)

1.安装依赖项

同时查看torch版本,colab目前的torch版本符合Detectron2安装要求,故不需其他安装指令。

!pip install cython pyyaml==5.1
!pip install -U 'git+https://github.com/facebookresearch/fvcore'
!pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

import torch, torchvision
print(torch.__version__, torch.cuda.is_available())
!gcc --version

2.安装Detectron2

!git clone https://github.com/facebookresearch/detectron2 #下载Detectron2
!pip install -e /content/drive/MyDrive/detectron2 #安装Detectron2

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值