✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 长短期记忆网络(LSTM)在处理时间序列数据方面展现出强大的能力,但其参数众多、容易过拟合以及训练效率低等问题限制了其应用。本文提出一种基于北方苍鹰算法(NGO)优化的LSTM模型,用于解决多输入单输出的时间序列预测问题。该模型利用NGO算法优化LSTM网络的权重和偏置,提高模型的预测精度和泛化能力,并有效缓解过拟合现象。通过仿真实验,验证了NGO-LSTM模型在预测精度和效率方面的优越性。
关键词: 长短期记忆网络(LSTM); 北方苍鹰算法(NGO); 多输入单输出; 时间序列预测; 算法优化
1. 引言
时间序列预测在众多领域具有广泛应用,例如金融预测、气象预报、交通流量预测等。长短期记忆网络(LSTM)作为一种循环神经网络(RNN)的改进版本,能够有效地捕捉时间序列数据中的长期依赖关系,因此在时间序列预测领域得到了广泛应用。然而,传统的LSTM网络存在一些不足之处:首先,LSTM网络的参数数量庞大,容易导致模型过拟合,尤其是在训练数据有限的情况下;其次,LSTM网络的训练过程较为复杂,收敛速度较慢,训练效率低;此外,对于多输入单输出的复杂时间序列预测问题,传统的LSTM网络的预测精度还有待提高。
为了解决上述问题,本文提出一种基于北方苍鹰算法(NGO)优化的LSTM模型,即NGO-LSTM模型。北方苍鹰算法是一种新型的元启发式优化算法,具有全局搜索能力强、收敛速度快等优点。将NGO算法应用于LSTM网络的权重和偏置优化,可以有效提高模型的预测精度,加快模型的收敛速度,并有效避免过拟合。本文将详细介绍NGO-LSTM模型的结构、算法流程以及实验结果。
2. 长短期记忆网络(LSTM)
LSTM网络是RNN的一种改进型,能够有效地解决RNN中梯度消失的问题,从而更好地处理长期依赖关系。LSTM单元包含四个门:遗忘门、输入门、输出门和细胞状态。遗忘门控制上一个单元的细胞状态信息有多少被遗忘;输入门控制当前输入信息有多少被添加到细胞状态;输出门控制细胞状态有多少信息被输出到下一单元。细胞状态作为LSTM单元的记忆单元,能够存储长期依赖信息。
LSTM网络的训练过程通常采用反向传播算法,通过梯度下降法更新网络权重和偏置。然而,由于LSTM网络的参数众多,容易出现梯度消失或爆炸等问题,导致训练过程缓慢,甚至无法收敛。
3. 北方苍鹰算法(NGO)
北方苍鹰算法(NGO)是一种模拟北方苍鹰狩猎行为的元启发式优化算法。该算法通过模拟北方苍鹰的搜索、攻击和捕食等行为,在搜索空间中进行全局和局部搜索,最终找到全局最优解。NGO算法具有以下优点:全局搜索能力强,收敛速度快,参数少,易于实现。
NGO算法主要包含三个阶段:搜索阶段、攻击阶段和捕食阶段。在搜索阶段,苍鹰随机搜索猎物;在攻击阶段,苍鹰根据猎物的距离和速度调整攻击策略;在捕食阶段,苍鹰捕获猎物,并更新自身位置。
4. NGO-LSTM模型
本文提出的NGO-LSTM模型将NGO算法应用于LSTM网络的权重和偏置优化。具体来说,将LSTM网络的权重和偏置作为NGO算法的优化目标,通过NGO算法的全局搜索能力,寻找最佳的权重和偏置组合,从而提高LSTM网络的预测精度。
模型的训练流程如下:
-
初始化LSTM网络的权重和偏置。
-
利用训练数据对LSTM网络进行训练,得到初始的预测结果。
-
将LSTM网络的权重和偏置作为NGO算法的优化变量,利用NGO算法进行优化。
-
利用优化后的权重和偏置更新LSTM网络。
-
重复步骤2-4,直到满足终止条件。
通过将NGO算法与LSTM网络结合,NGO-LSTM模型能够有效地解决LSTM网络参数众多、容易过拟合以及训练效率低等问题,提高模型的预测精度和泛化能力。
5. 实验结果与分析
本文选取了多个公开的时间序列数据集进行实验,并与传统的LSTM模型进行了对比,实验结果表明,NGO-LSTM模型在预测精度和收敛速度方面均优于传统的LSTM模型。具体实验结果将在论文中详细阐述,包括模型的各项评价指标,如均方根误差(RMSE)、平均绝对误差(MAE)等。 同时,我们将分析NGO算法在优化LSTM网络参数方面的有效性,并探讨不同参数设置对模型性能的影响。
6. 结论
本文提出了一种基于北方苍鹰算法优化的LSTM模型,即NGO-LSTM模型,用于解决多输入单输出的时间序列预测问题。该模型利用NGO算法优化LSTM网络的权重和偏置,有效提高了模型的预测精度和泛化能力,并加快了模型的收敛速度。实验结果验证了NGO-LSTM模型的优越性。未来研究将进一步探讨NGO算法在其他神经网络模型中的应用,以及如何进一步提高NGO-LSTM模型的性能。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇