codeforces 379G. New Year Cactus

博客内容涉及codeforces 379G问题,探讨如何在2500节点的仙人掌图上进行染色,使得同一边的两端点颜色不为黑白,目标是找到所有可能黑色节点数对应的白色节点最大值。作者尝试使用dfs树结合动态规划(dp)解决,初步估计复杂度为O(n^3),但实际可能是O(n^2)。尽管未能详细推导,作者指出问题的关键在于平衡二叉树的性质,并且实现的dp代码较为复杂。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意:给一颗2500点的仙人掌,每个点可以染黑色,白色,不染色。同一条边两端点不能为黑白,求对于所有黑点个数的白点个数的最大值。

我直接想到了把他的dfs树建出来,直接dp节点x的儿子有y个黑点,当前染a,子树的返祖边染b的最大值。但是我以为他是O(n^3)的。但实际上他好像是O(n^2),然后就没有然后了。

//具体怎么推我真的不会,大概有这样的式子吧:T(n)=T(a)+T(n-a)+O(n*min(a,n-a)),反正平衡的二叉树是对的。。。

dp写的超长。。。

#include<bits/stdc++.h>
#define N 2505
using namespace std;
int n,m,x,y,dp[N][N][3][3],size[N],top[N],vis[N],fl[N],fa[N],dep[N];
int fst[N],to[N*4],nxt[N*4],l;

//dp[x] [y][a][b]
void link(int x,int y)
{
	to[++l]=y;nxt[l]=fst[x];fst[x]=l;
	to[++l]=x;nxt[l]=fst[y];fst[y]=l;
}
void upd(int &x,int y)
{
	if (y>x) x=y;
}
//0 1 2
void merge(int a,int b)
{
	int n,m;
	n=size[a];m=size[b];
	static int tmp[N][3][3];
	for (int i=0;i<=n+m;i++)
	for (int j=0;j<3;j++)
	for (int k=0;k<3;k++)
		tmp[i][j][k]=-1000000;
	for (int i=0;i<=n;i++)
	for (int j=0;j<=m;j++)
	{
		if (top[a]==top[b]&&top[b])
		{
			for (int x=0;x<3;x++)
			{
				upd(tmp[i+j][0][x],dp[a][i][0][0]+dp[b][j][0][x]);
				upd(tmp[i+j][0][x],dp[a][i][0][0]+dp[b][j][1][x]);
				upd(tmp[i+j][0][x],dp[a][i][0][0]+dp[b][j][2][x]);
			}
			for (int x=1;x<3;x++)
			{
				for (int y=0;y<3;y++)
				{
					upd(tmp[i+j][x][y],dp[a][i][x][0]+dp[b][j][0][y]);
					upd(tmp[i+j][x][y],dp[a][i][x][0]+dp[b][j][x][y]);
				}
			}
		}
		if (a==top[b])
		{
			for (int x=0;x<3;x++)
			{
				upd(tmp[i+j][0][0],dp[a][i][0][0]+dp[b][j][0][x]);
				upd(tmp[i+j][0][0],dp[a][i][0][0]+dp[b][j][1][x]);
				upd(tmp[i+j][0][0],dp[a][i][0][0]+dp[b][j][2][x]);
			}
			for (int x=1;x<3;x++)
			{
				upd(tmp[i+j][x][0],dp[a][i][x][0]+dp[b][j][0][0]);
				upd(tmp[i+j][x][0],dp[a][i][x][0]+dp[b][j][x][0]);
				upd(tmp[i+j][x][0],dp[a][i][x][0]+dp[b][j][0][x]);
				upd(tmp[i+j][x][0],dp[a][i][x][0]+dp[b][j][x][x]);
			}
		}
		if (top[a]==0&&top[b]==0)
		{
			upd(tmp[i+j][0][0],dp[a][i][0][0]+dp[b][j][0][0]);
			upd(tmp[i+j][0][0],dp[a][i][0][0]+dp[b][j][1][0]);
			upd(tmp[i+j][0][0],dp[a][i][0][0]+dp[b][j][2][0]);
			for (int x=1;x<3;x++)
			{
				for (int y=0;y<3;y++)
				{
					upd(tmp[i+j][x][y],dp[a][i][x][0]+dp[b][j][0][y]);
					upd(tmp[i+j][x][y],dp[a][i][x][0]+dp[b][j][x][y]);
				}
			}
		}
		if (top[a]&&top[a]!=top[b])
		{
			for (int x=0;x<3;x++)
			{
				upd(tmp[i+j][0][x],dp[a][i][0][x]+dp[b][j][0][0]);
				upd(tmp[i+j][0][x],dp[a][i][0][x]+dp[b][j][1][0]);
				upd(tmp[i+j][0][x],dp[a][i][0][x]+dp[b][j][2][0]);
			}
			for (int x=1;x<3;x++)
			{
				for (int y=0;y<3;y++)
				{
					upd(tmp[i+j][x][y],dp[a][i][x][y]+dp[b][j][0][0]);
					upd(tmp[i+j][x][y],dp[a][i][x][y]+dp[b][j][x][0]);
				}
			}
		}
	}
	for (int i=0;i<=n+m;i++)
	for (int j=0;j<3;j++)
	for (int k=0;k<3;k++)
		dp[a][i][j][k]=tmp[i][j][k];
}
void dfs(int x)
{
	vis[x]=1;size[x]=1;dep[x]=dep[fa[x]]+1;
	dp[x][0][0][0]=0;
	dp[x][0][1][0]=1;
	dp[x][0][2][0]=-1000000;
	
	dp[x][1][0][0]=-1000000;
	dp[x][1][1][0]=-1000000;
	dp[x][1][2][0]=0;
	int tmp=0;
	for (int i=fst[x];i;i=nxt[i])
	if (!vis[to[i]])
	{
		fa[to[i]]=x;
		dfs(to[i]);
		if (top[to[i]]&&top[to[i]]!=x)
			tmp=to[i];
		else
		{
			merge(x,to[i]);
			size[x]+=size[to[i]];
		}
	}
	else
	{
		if (dep[to[i]]<dep[x]&&to[i]!=fa[x])
			top[x]=to[i],fl[x]=1;
	}
	if (tmp)
	{
		top[x]=top[tmp];
		merge(x,tmp);
		size[x]+=size[tmp];
	}
	if (fl[x])
	{
		for (int i=0;i<=size[x];i++)
		{
			dp[x][i][0][1]=-1000000;
			dp[x][i][0][2]=-1000000;
			
			dp[x][i][1][1]=dp[x][i][1][0];
			dp[x][i][1][0]=-1000000;
			dp[x][i][1][2]=-1000000;
			
			dp[x][i][2][2]=dp[x][i][2][0];
			dp[x][i][2][1]=-1000000;
			dp[x][i][2][0]=-1000000;
		}
	}
}
int main()
{
	scanf("%d%d",&n,&m);
	for (int i=1;i<=m;i++)
		scanf("%d%d",&x,&y),link(x,y);
	dfs(1);
	for (int i=0;i<=n;i++)
	{
		int ans=-1000000;
		for (int x=0;x<3;x++)
			upd(ans,dp[1][i][x][0]);
		printf("%d ",ans);
	}
}


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值