论文简介:
《Very Deep Convolutional Networks For Large-Scale Image Recognition》文章出自牛津大学Robotics ReSearch Group团队,在2014ILSVRC (ImageNet Large Scale Visual Recognition Competition)竞赛中,团队在localisation(目标定位)和classification(分类)两个任务中分别获得第一和第二名的成绩,在分类任务中的准确度仅次于GoogLeNet。
一、Abstract 摘要
本文作者研究了在其他若干因素保持不变的情况下,卷积神经网络(CNN)的深度(depth,网络的层数)与训练收敛后的网络模型的预测准确性之间的关系。VGG 网络全部使用小的卷积核(3x3),通过将网络层数增大到16-19层,证明,通过增大神经网络的层数(此处的层数是指具有可训练模型参数的网络层,例如卷积层、全连接层,池化层没有参数,不计算),可以获得较高的模型预测准确性。
二、Introduction 介绍
受益于公开的大规模图像数据集(ImageNet)以及高性能的计算系统(GPU),大规模数据集可以使得网络得到充分的训练,降低过拟合的风险,高性能计算设备加速了网络的迭代训练。ImageNet 在深度图像识别技术的进步中具有重要的地位,它是从