K-折交叉验证(原理及实现)

        在机器学习中,我们训练数据集去训练一个model(模型),通常的做法是定义一个Loss function(损失函数),通过这个最小化loss的过程来提高模型的性能。然而我们学习模型的目的是为了解决实际问题(或者说是训练这个数据集领域中的一般化问题),单纯的将训练数据集的loss最小化,并不能保证在解决更一般的问题时模型仍然是最优,甚至不能保证模型是可用的。这个训练数据集的loss与一般化的数据集的loss之间的差异就叫做generalization error=bias+variance。注意:bias和variance是针对Generalization(一般化,泛化)来说的。

一、Bias

       我们先来看个栗子(参考程序员在深圳的博主的博客),假设实验室收集了老鼠的体重和大小的数据,我们可以建立一个模型,通过输入老鼠的大小来预测老鼠的体重,部分数据的散点图如下。在训练之前,我们还是将数据拆分为两部分,红色的点为训练集,绿色的点表示测试集:

       接下来我们用两个模型来拟合数据(可以使用最小二乘法来拟合),第一个模型如下图所示:

模型一

       可以看到线性模型不能很好的拟合描绘真实数据,我们一般使用 MSE (Mean Squared Error) 来量化这种拟合能力,即预测值和实际值之间的差值的平方的均值。

       第二个模型如下图 所示 :

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值