Graph Contextualized Self-Attention Network for Session-based Recommendation

Graph Contextualized Self-Attention Network for Session-based Recommendation

本篇论文主要是在讲图上下文自注意力网络做基于session的推荐,在不使用循环神经网络和卷积神经网络的情况下,自注意网络在各种序列建模任务中取得了显著的成功,然而SAN缺乏存在于相邻项目上的局部依赖性,并限制了其学习序列中上下文表示的能力。本文提出使用图上下文自注意网络模型,使用图神经网络和自注意力机制做推荐,每个session使用自注意力机制学习长期依赖性。最后,每个会话被表示为该会话的全局偏好和当前兴趣的线性组合。
首先是session图的构建,session图的节点表示session中item,session中的边表示item中的关系,构成一个有向图,如下图所示
由session转换为session图
我们用M(I)和M(O)表示输入和输出边的权重连接矩阵,举个栗子,假设一个Session S = {s1, s3, s2, s4, s3},M(I)和M(O)的矩阵如下图所示:
输入边和输出边的权重连接矩阵
在构建完session图之后,经过图神经网络得到session中每个item的潜在的表示,然后再经过自注意力层得到session

hierarchical-graph-attention-network-master是一个使用分层图注意力网络(Hierarchical Graph Attention Network)进行训练和预测的项目。该项目主要针对一种特定的数据集。 该数据集可以是一个图数据集,其中包含多个节点和边,每个节点代表一个实体或对象,每个边代表节点之间的关系或连接。 具体来说,数据集可能包含以下内容: 1. 节点信息:每个节点具有一些特征或属性,描述了节点的性质。这些特征可以是结构性的,如节点的ID或位置,也可以是属性性的,如节点的词向量表示或其他自定义的特征描述。 2. 边信息:每个边包含了节点之间的连接关系或关联性。这些关系可以是有向的或无向的,可以是带权重的或不带权重的。比如,在社交网络中,节点可以表示人,边可以表示朋友关系,权重可以表示亲密程度。 3. 层次结构:数据集可能包含多个层次结构,即节点可以按照一定的层次结构进行组织和分组。比如,在一张包含人和城市的图中,可以将人节点按照所属城市进行分组,形成一个城市层次和一个人层次。 Hierarchical Graph Attention Network可以在这样的数据集上进行训练和预测。它通过层次结构和图注意力机制来捕捉节点之间的结构信息和特征关联。在训练过程中,网络会学习到不同层次和节点之间的重要性权重,从而在预测任务中能够更好地利用数据集中的信息。 这样,利用hierarchical-graph-attention-network-master项目,我们可以对给定的图数据集进行分层建模和预测,从而有效利用节点之间的结构和关联信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值