KL散度和交叉熵

KL散度 (Kullback-Leibler (KL) divergence) 是信息论中的一个重要概念,它可以用来衡量两个随机分布的差异,这篇文章会举一个例子用通俗易懂的方式来解释KL散度和与它密切联系的交叉熵 (cross-entropy) 概念
通俗易懂解释KL酸度和交叉熵

概念介绍

1. 什么是KL散度?

KL散度(Kullback-Leibler散度)就像是一个**“寻找差异的游戏”**。假设现在我们有一个盒子,这个盒子里有3种糖果分别是巧克力、水果糖和薄荷糖,但是我们不知道盒子里面三种糖果的比例是多少。此时我们又拿了一个盒子,往里面放入这三种糖果,作为我们的猜测:

  • 盒子A:糖果的分布是你以为的样子(比如你以为盒子里有50%的巧克力、30%的水果糖、20%的薄荷糖)。
  • 盒子B:糖果的分布是实际的样子(比如实际上是60%的巧克力、25%的水果糖、15%的薄荷糖)。

KL散度就是一种计算方法,用来告诉你:“你以为的糖果分布”和“实际的糖果分布”有多大的差异。

  • 如果两种分布差不多(你猜得很准),KL散度会很小,意思是:你猜得不错!
  • 如果两种分布差异很大(你猜得不准),KL散度会很大,意思是:你需要调整你的猜测啦!

KL散度就是在帮你看:你“以为的盒子A”和“真实的盒子B”到底差了多少。

2. 什么是交叉熵?

交叉熵有点像是一个**“惩罚游戏”**,用来告诉你:你猜得有多糟糕。

假设你在玩一个游戏,规则是这样:

  1. 盒子里有糖果,你需要猜每种糖果出现的概率(比如,巧克力50%,水果糖30%,薄荷糖20%)。
  2. 游戏主持人会根据真实的糖果分布,给你一种惩罚分数,如果你猜得不好,分数就会很高。

交叉熵就是计算你“猜测的分布”和“真实分布”之间的差异,然后告诉你:你猜得有多差

  • 如果你猜得很接近真实分布,惩罚分数会很低,这说明你很聪明!
  • 如果你猜得离真实分布很远,惩罚分数会很高,主持人会说:“哎呀,你需要更努力猜准哦!”

3. KL散度和交叉熵的关系

根据上面的例子,我们可以知道KL散度与交叉熵之间的关系就是:

  • 交叉熵 = “你猜得有多糟糕”(总的惩罚分数)。
  • KL散度 = “你猜错的部分”(差异分数)。

所以,KL散度其实是交叉熵的一部分,它专门关注你“以为的分布”和“真实分布”之间的差异。


用公式计算KL散度和交叉熵:

下面我们用实际的公式去计算糖果问题的KL散度和交叉熵

  • 你以为的分布(盒子A,猜测分布):
    • 巧克力:50% (0.5)
    • 水果糖:30% (0.3)
    • 薄荷糖:20% (0.2)
  • 实际的分布(盒子B,真实分布):
    • 巧克力:60% (0.6)
    • 水果糖:25% (0.25)
    • 薄荷糖:15% (0.15)

1. KL散度公式:

KL散度的公式是:
DKL(P∣∣Q)=∑iP(i)⋅log⁡(P(i)Q(i)) D_{KL}(P || Q) = \sum_{i} P(i) \cdot \log\left(\frac{P(i)}{Q(i)}\right) DKL(P∣∣Q)=iP(i)log(Q(i)P(i))

其中:

  • P(i)P(i)P(i)是你猜的概率(盒子A)。
  • Q(i)Q(i)Q(i)是真实的概率(盒子B)。
  • log⁡\loglog是对数函数(一般用以2为底或自然对数)。这里用自然对数(ln⁡\lnln)。

逐项计算:

第一种糖果:巧克力

  • P(巧克力)=0.5,Q(巧克力)=0.6P(巧克力) = 0.5, Q(巧克力) = 0.6P(巧克力)=0.5,Q(巧克力)=0.6
  • 0.5⋅ln⁡(0.50.6)=0.5⋅ln⁡(0.8333)=0
KL交叉熵是在机器学习中用于比较两个概率分布之间相似性的概念,但在一些方面它们也有所不同。KL用于衡量两个概率分布之间的差异,而交叉熵则用于衡量模型预测真实标签之间的差异。 具体来说,KL衡量的是从一个概率分布到另一个概率分布的信息损失。它是非对称的,即KL(P||Q)不等于KL(Q||P)。KL的值越小,表示两个概率分布越相似。 交叉熵是在给定真实标签的情况下,衡量模型预测与真实标签之间的差异。它是对数损失函数的一种形式,用于评估模型的性能。交叉熵的值越小,表示模型的预测越接近真实标签。 总结来说,KL用于比较两个概率分布之间的差异,而交叉熵用于衡量模型预测真实标签之间的差异。它们在使用应用上有所区别,但都在机器学习中有广泛的应用。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *3* [KL交叉熵的对比介绍](https://blog.csdn.net/qq_33431368/article/details/130397363)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [KL交叉熵](https://blog.csdn.net/Allenalex/article/details/103443060)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Noobfurid

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值