RetinaNet(Focal-loss)

介绍了Focal Loss如何解决目标检测中正负样本极度不平衡的问题,并探讨了RetinaNet对于gamma参数的鲁棒性。该研究通过引入alpha平衡公式和调整损失函数,显著提升了密集目标检测的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Paper-info

  • title : Focal Loss for Dense Object Detection[ICCV-2017]
  • author : Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollar.

Idea

                                                   

  • alpha-balanced formula 

                                                               ,  

Pipeline

                               

Contribution

  • 通过引入focal-loss缓解了Faster rcnn存在bbox正负类极不均衡的问题。
  • RetinaNet对于gamma的选取具有一定的鲁棒性。

Experiment

                             

         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ReLuJie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值