计算机视觉怎么入门?超详细计算机视觉学习路线!CV入门

入门计算机视觉,建议从基础知识 + 工具实操 + 简单项目三步走,掌握基本概念、图像处理技能、再接触深度学习模型。下面是一个从零入门的详细步骤,适合没有基础或刚入门的人:

计算机视觉入门

🧩 第一步:了解什么是计算机视觉(CV)

🎯 什么是CV?

计算机视觉是让计算机“看懂”图片或视频的技术,主要任务包括:

  • 图像分类(判断图中是什么)

  • 目标检测(图中有什么,在哪)

  • 图像分割(把图像中物体分出来)

  • OCR文字识别、人脸识别、姿态估计等

👉 目标:理解CV的主要任务和技术边界,不盲学


🧱 第二步:打基础(数学 + 编程 + 图像处理)

🧮 数学基础(边学边用)

  • 线性代数:矩阵、向量、点乘

  • 概率论:高斯分布、贝叶斯公式

  • 微积分:梯度、偏导

推荐:B站上看“3Blue1Brown”线性代数动画 + 吴恩达机器学习课程前几节

💻 编程语言:Python

  • 学基础语法、函数、Numpy数组操作

  • 学会用 Matplotlib 画图,理解图像是二维矩阵

🖼️ 学 OpenCV(图像处理工具)

OpenCV 是计算机视觉的“瑞士军刀”,入门必学:

  • 图像读取/显示/保存:cv2.imread(), cv2.imshow()

  • 基本处理:灰度化、缩放、模糊、边缘检测(Canny)

  • 特征提取:角点(Harris)、边缘、轮廓

👉 推荐练习项目:

  • 图片滤镜(磨皮、美颜)

  • 图像拼接(全景图)

  • 简单人脸检测(Haar 特征)


🧠 第三步:入门深度学习视觉模型

当你能熟练用 OpenCV 处理图像后,可以开始接触现代 CV 方法:

学习框架:PyTorch(推荐)或 TensorFlow

  • 搭建简单的 CNN 模型(卷积网络)

  • 用已有模型做迁移学习(ResNet、MobileNet)

实现入门项目:

  • 猫狗分类器(图片分类)

  • YOLOv5 实现目标检测(人、车、狗等)

  • U-Net 实现图像分割

👉 推荐资源:

  • 吴恩达的 DeepLearning.ai 课程(Coursera)

  • B站:莫烦Python、小土堆深度学习系列


🔧 补充:建议的入门顺序(适合0基础到初级)

时间任务
第1周学Python基础,理解图像是矩阵
第2~3周学OpenCV图像处理:灰度、滤波、边缘检测
第4~5周做1-2个小项目:滤镜、人脸检测、图像合成
第6~8周学CNN基础,用PyTorch训练简单分类模型
第9周+学YOLO目标检测,尝试实战项目(如识别车辆、人)

🎓 入门后的下一步?

  • 继续深造(考研/论文阅读):可以学ViT、SAM、Diffusion等前沿

  • 就业方向:算法工程师、视觉开发、边缘部署等

  • 项目积累:自己做项目/参加比赛/Kaggle刷题


✅ 总结:从零入门CV的三步

1)图像处理基础 → 2)掌握OpenCV/PyTorch工具 → 3)模型+实战项目巩固

 免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面,获取方式见图。
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【大模型入门自学资料包】
【学术论文写作攻略工具】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值