入门计算机视觉,建议从基础知识 + 工具实操 + 简单项目三步走,掌握基本概念、图像处理技能、再接触深度学习模型。下面是一个从零入门的详细步骤,适合没有基础或刚入门的人:
🧩 第一步:了解什么是计算机视觉(CV)
🎯 什么是CV?
计算机视觉是让计算机“看懂”图片或视频的技术,主要任务包括:
-
图像分类(判断图中是什么)
-
目标检测(图中有什么,在哪)
-
图像分割(把图像中物体分出来)
-
OCR文字识别、人脸识别、姿态估计等
👉 目标:理解CV的主要任务和技术边界,不盲学
🧱 第二步:打基础(数学 + 编程 + 图像处理)
🧮 数学基础(边学边用)
-
线性代数:矩阵、向量、点乘
-
概率论:高斯分布、贝叶斯公式
-
微积分:梯度、偏导
推荐:B站上看“3Blue1Brown”线性代数动画 + 吴恩达机器学习课程前几节
💻 编程语言:Python
-
学基础语法、函数、Numpy数组操作
-
学会用 Matplotlib 画图,理解图像是二维矩阵
🖼️ 学 OpenCV(图像处理工具)
OpenCV 是计算机视觉的“瑞士军刀”,入门必学:
-
图像读取/显示/保存:
cv2.imread()
,cv2.imshow()
-
基本处理:灰度化、缩放、模糊、边缘检测(Canny)
-
特征提取:角点(Harris)、边缘、轮廓
👉 推荐练习项目:
-
图片滤镜(磨皮、美颜)
-
图像拼接(全景图)
-
简单人脸检测(Haar 特征)
🧠 第三步:入门深度学习视觉模型
当你能熟练用 OpenCV 处理图像后,可以开始接触现代 CV 方法:
学习框架:PyTorch(推荐)或 TensorFlow
-
搭建简单的 CNN 模型(卷积网络)
-
用已有模型做迁移学习(ResNet、MobileNet)
实现入门项目:
-
猫狗分类器(图片分类)
-
YOLOv5 实现目标检测(人、车、狗等)
-
U-Net 实现图像分割
👉 推荐资源:
-
吴恩达的 DeepLearning.ai 课程(Coursera)
-
B站:莫烦Python、小土堆深度学习系列
🔧 补充:建议的入门顺序(适合0基础到初级)
时间 | 任务 |
---|---|
第1周 | 学Python基础,理解图像是矩阵 |
第2~3周 | 学OpenCV图像处理:灰度、滤波、边缘检测 |
第4~5周 | 做1-2个小项目:滤镜、人脸检测、图像合成 |
第6~8周 | 学CNN基础,用PyTorch训练简单分类模型 |
第9周+ | 学YOLO目标检测,尝试实战项目(如识别车辆、人) |
🎓 入门后的下一步?
-
继续深造(考研/论文阅读):可以学ViT、SAM、Diffusion等前沿
-
就业方向:算法工程师、视觉开发、边缘部署等
-
项目积累:自己做项目/参加比赛/Kaggle刷题
✅ 总结:从零入门CV的三步
1)图像处理基础 → 2)掌握OpenCV/PyTorch工具 → 3)模型+实战项目巩固
免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面,获取方式见图。
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【大模型入门自学资料包】
【学术论文写作攻略工具】