自人类基因组计划开启以来,科学界在疾病基因定位领域取得重大突破。超过3000个基因的突变被证实与2000余种遗传病相关,全基因组关联研究(GWAS)也锁定了近千个与糖尿病、克罗恩病等复杂疾病相关的基因位点。但一个核心问题始终存在——为什么相同基因突变在不同个体中会引发截然不同的表型? 双胞胎研究表明,基因完全相同的个体仍有40%以上的疾病发生差异,这揭示了传统"基因-疾病"线性模型的局限性(Vidal et al., 2011)。
互作组(Interactome)概念的提出,标志着疾病研究进入系统生物学时代。细胞不是"一袋散装酶"的集合,而是由蛋白质互作、基因调控、代谢通路交织而成的动态网络。本文将通过六大前沿技术(ChIP-seq/CUT&Tag、ATAC-seq、Hi-C、BS-seq、RNA-seq)的深度整合,揭示多维互作组研究如何破解疾病发生的网络密码。
01 从“单基因”到“互作网络”的范式转变
在正常生理状态下,人体的各项生物机能均由多种生物单位(包括蛋白质、代谢物、小分子、基因、非编码RNA等)通过精密的协作网络实现。绝大多数生物单位需通过与其它单位相互作用才能发挥功能,由此形成的"相互作用组"网络具有惊人的复杂性:仅以人类为例,网络中可能包含超过25000个蛋白质编码基因、约1000种核心代谢物以及数量庞大的功能性RNA分子(如miRNA、lncRNA),节点总数极易突破100000个。这种深度互连性意味着,单个生物单位的异常不仅影响其自身功能,更可能通过网络连接扩散,导致远端未发生原始缺陷的单位功能失调,如同前面所说的"表型常源于细胞系统和网络性质的扰动"。
这种网络依赖性直接决定了疾病表型的形成机制:疾病表型鲜少由单一基因产物异常驱动,而是反映了复杂网络中多节点协同失调的病理过程。分子元件间的强关联性揭示了不同表型之间可能存在的深层功能关联(例如共享通路)、分子级联反应(如信号传导失衡)以及因果传递链(如修饰基因效应)。如下图所示,网络特性与表型(尤其是疾病易感性)的关联性可能与遗传变异同等重要。
图 生物系统和细胞网络中的扰动可能是基因型-表型关系的基础(Vidal et al., 2011)。
02 互作组网络类型及规律
(一)有哪些常见的互作组网络:
表 展示多种类型互作网络模型。
(二)互作组网络的作用规律:
图 互作网络规律(Barabási et al., 2011)。
03 六大核心技术如何解析互作组?
互作网络图谱是组学数据的“组织框架”,通过揭示分子间关联将离散的基因/蛋白列表转化为系统级洞察。其与组学技术的协同推动生物学从“部件清单”向“电路原理”认知转变,最终服务于疾病机制解析与干预策略设计。
参考文献
[1] Vidal M, Cusick M E, Barabási A L. Interactome networks and human disease[J]. Cell, 2011, 144(6): 986-998.
[2] Barabási A L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease[J]. Nature reviews genetics, 2011, 12(1): 56-68.