求解最大矩阵和

什么叫最大矩阵和,给你一个包含数字的矩阵,每一个矩阵格子都包含一个数字,当然有正有负,求出其所有子矩阵中最大的那个和。给定的这个矩阵也可以算一个子矩阵。

 

解决

1.暴力,枚举左上角的点和右下角的点,利用前缀和,然后就能求出结果,时间复杂度O(n²*n²)

 

2.动态规划加预处理,一维矩阵的最大连续和

我们要把二维矩阵进行降维,把二维矩阵降成一维数组

首先要知道一点,我们的最大的子矩阵,首先肯定是位于i行和j行之间的。

这里我们就需要用到一个辅助的矩阵mat[][],这个矩阵的mat[i][j]位置放置的是给定的矩阵的第j列中,前i行的所有数的和。

 

上面的k就是第k列,sum[k]就等于第k列中第i行和第j行之间的所有数的和,然后就能利用最大连续和求得当前矩阵的和了。

 

代码实现,只是实现了求出最大连续和,当前也可以实现记录最大子矩阵的位置输出最大子矩阵。

#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#define MIN 0x80000000
#define max(x,y) x > y ? x : y

// 最大连续和
int max_sum(int* nums,int len){
    int dp[len];
    memset(dp,0,sizeof(dp));
    dp[0] = nums[0];
    int m = MIN;
    for(int i=1;i<len;i++){
        dp[i] = max(nums[i],nums[i]+dp[i-1]);
        m = max(m,dp[i]);
    }
    return m;
}

int main(){
    int m,n;
    scanf("%d%d",&m,&n);
    int map[m][n];
    int table[m][n];
    for(int i=0;i<m;i++){
        for(int j=0;j<n;j++){
            scanf("%d",&map[i][j]);
            if(i == 0){
                table[0][j] = map[i][j];
            }else{
                table[i][j] = 0;
            }
        }
    }
    for(int i=1;i<m;i++){
        for(int j=0;j<n;j++){
            table[i][j] += map[i][j] + table[i-1][j];
        }
    }
    int res[m];
    int maxSum = MIN;
    for(int i=0;i<m;i++){
        for(int j=0;j<=i;j++){
            for(int k=0;k<m;k++){
                if(i == 0){
                    res[k] = table[j][k];
                }else{
                    res[k] = table[j][k] - table[i-1][k];
                }
            }
            int sum = max_sum(res,m);
            maxSum = max(sum,maxSum);
        }
    }
    printf("%d\n",maxSum);
}


 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值