导入库
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
读取照片
这里的路径是自己存放图片的路径
image_data=tf.keras.preprocessing.image.load_img(r'E:\10\1.jpg','rb')
可视化
plt .imshow(image_data)
plt.show()
img_data=tf.keras.preprocessing.image.img_to_array(image_data)
resized=tf.image.resize(img_data,[256,256])
print("Digital type:",resized.dtype)
resized1=np.asarray(resized,dtype='uint8')
plt.imshow(resized1)
plt.show()
print("Digital type:",resized1.dtype)
resized2=tf.image.resize(img_data,[256,512],method='nearest')
resized2=np.asarray(resized2,dtype='uint8')
plt.imshow(resized2)
plt.show()
resized3=tf.image.resize(img_data,[256,256],method='bicubic')
resized3=np.asarray(resized3,dtype='uint8')
plt.imshow(resized3)
plt.show()
resized3=tf.image.resize(img_data,[256,256],method='area')
resized3=np.asarray(resized3,dtype='uint8')
plt.imshow(resized3)
plt.show()
croped=tf.image.resize_with_crop_or_pad(img_data,100,100)
croped=np.asarray(croped,dtype='uint8')
plt.imshow(croped)
plt.show()
padded=tf.image.resize_with_crop_or_pad(img_data,600,600)
padded=np.asarray(padded,dtype='uint8')
plt.imshow(padded)
plt.show()
random_croped1=tf.image.random_crop(img_data,[200,200,3])
random_croped1=np.asarray(random_croped1,dtype='uint8')
plt.imshow(random_croped1)
plt.show()
img_data=np.asarray(img_data,dtype='uint8')
plt.imshow(img_data)
plt.show()
flip_left_right=tf.image.flip_left_right(img_data)
flip_left_right=np.asarray(flip_left_right,dtype='uint8')
plt.imshow(flip_left_right)
plt.show()
img_data=np.asarray(img_data,dtype='uint8')
plt.imshow(img_data)
plt.show()
flip_up_down=tf.image.flip_up_down(img_data)
img_data=np.asarray(img_data,dtype='uint8')
plt.imshow(flip_up_down)
plt.show()
img_data=np.asarray(img_data,dtype='uint8')
plt.imshow(img_data)
plt.show()
contrast=tf.image.random_contrast(img_data,lower=0.2,upper=3)
contrast=np.asarray(contrast,dtype='uint8')
plt.imshow(contrast)
plt.show()
img_data=np.asarray(img_data,dtype='uint8')
plt.imshow(img_data)
plt.show()
standardization=tf.image.per_image_standardization(img_data)
standardization=np.asarray(standardization,dtype='uint8')
plt.imshow(np.asarray(standardization,dtype='uint8'))
plt.show()
import numpy as np
from PIL import Image
def imgConvolve(image_array,kernel):
'''参数说明:
image_array:原灰度图像矩阵
kernel :卷积核
返回值:原图像与算子进行卷积后的结果
'''
image_arr = image_array.copy()
img_dim1,img_dim2 = image_arr.shape
k_dim1,k_dim2 = kernel.shape
AddW = int((k_dim1-1)/2)
AddH = int((k_dim2-1)/2)
temp = np.zeros([img_dim1 + AddW*2,img_dim2 + AddH*2])
temp[AddW:AddW+img_dim1,AddH:AddH+img_dim2]= image_arr[:,:]
output = np.zeros_like(a=temp)
for i in range(AddW,AddW+img_dim1):
for j in range(AddH,AddH+img_dim2):
output[i][j]= int(np.sum(temp[i-AddW:i+AddW+1,j-AddW:j+AddW+1]*kernel))
return output[AddW:AddW+img_dim1,AddH:AddH+img_dim2]
kernel_1=np.array(
[[-1,0,1],
[-1,9,2],
[-1,0,1]])
kernel_2=np.array(
[[-1,-2,-1],
[0,0,0],
[1,2,1]])
kernel_3=np.array(
[[1,1,1],
[1,-8,1],
[1,1,1]])
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
%matplotlib inline
image = Image.open("E:/10/22.png").convert("L")
image_array = np.array(image)
sobel_x = imgConvolve(image_array,kernel_1)
sobel_y = imgConvolve(image_array,kernel_2)
laplace = imgConvolve(image_array,kernel_3)
plt.imshow(image_array,cmap=cm.gray)
plt.axis("off")
plt.show()
plt.imshow(sobel_x,cmap=cm.gray)
plt.axis("off")
plt.show()
plt.imshow(sobel_y,cmap=cm.gray)
plt.axis("off")
plt.show()
plt.imshow(laplace,cmap=cm.gray)
plt.axis("off")
plt.show()