大模型评估基准(Benchmark)概述

大模型评估基准(Benchmark)概述

大模型的评估基准(benchmark)是用于评估和比较不同大模型在各种任务上的性能。每个 benchmark 通常聚焦于特定类型的任务或数据集,通过标准化的测试数据和评估指标,来衡量模型在这些任务中的表现。这些 benchmark 通常用于验证模型的泛化能力、理解能力、推理能力、生成能力等。以下是一些常见类型的任务及其用途:

1. 视觉问答(Visual Question Answering, VQA)

示例: VQAv2, OK_VQA, TextVQA, VizWiz_VQA

这些基准用于评估模型对图像内容的理解能力,要求模型在看到图像后回答相关问题。任务难度取决于问题的复杂性和图像的内容。

2. 多模态推理(Multimodal Reasoning)

示例: MMBench, MVBench, ScienceQA

多模态推理任务结合了视觉和文本信息,要求模型从图像、文本等多种模态中推断出正确的答案。例如,给定一个图像和一个问题,模型需要利用图像中的信息和问题中的文字来推理出答案。

3. 多模态生成(Multimodal Generation)

示例: ChartQA, Video Detail Description

这些基准测试模型生成文字描述或回答问题的能力,要求模型结合图像或视频内容生成准确且连贯的文本。

4. 文档理解与问答(Document Understanding & QA)

示例:

### 医疗领域大规模预训练模型性能基准对比 #### 性能指标概述 在医疗计算任务中,研究主要集中在评估大型语言模型(LLMs)的医学计算能力。这包括了来自55种不同医学计算任务的手动审查实例共1000个案例[^2]。 #### 查询效率与成本分析 实验表明,在处理查询请求时,TO-Router展示了更好的综合表现,能够在保持较低的成本的同时减少查询执行的时间,并维持较高的模型性能水平[^1]。 #### 图像分类任务的具体实现细节 针对图像分类任务,特别是涉及病理图像的数据集,PLIP图像编码器被用来同端到端深度学习模型ViT-B/32作比较。后者是在ImageNet数据集上预先训练过的。两个模型均采用批量大小为128的方式运行,并利用带有解耦权重衰减机制的Adam优化算法来进行微调操作;其中权重衰减值设定为0.1,整个过程持续十轮迭代。为了找到最优的学习速率,研究人员从一系列候选值{1×10^-6, 1×10^-5, ..., 1×10^-2}里挑选出了能在验证集中取得最高加权F1得分的那个数值。值得注意的是,该验证集是从原训练样本总量的30%部分随机抽取出来的。最终选定的最佳配置下,这些模型接受了全部可得训练资料的再培训,并于独立设立的测试集合上完成了对其泛化能力的评测工作——比如对于Kather数据集而言,则是以其初始版本中的10%作为检验对象[^3]。 ```python import torch.optim as optim # 定义优化器及其参数 optimizer = optim.Adam( params=model.parameters(), lr=best_learning_rate, weight_decay=0.1 ) for epoch in range(epochs): train(model, optimizer, data_loader) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PeterClerk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值