我们对S集建立AC自动机,用
可以发现在AC自动机上运行串时,所经过的节点和沿这个节点的fail指针向上经过的所有节点代表的串都在T中出现过。所以要求的就是一些树链的并集。
我们把这些点拿出来按照fail树的dfs序排序,用树状数组维护dfs序的前缀和,把每个点处+1,把两两lca处-1,询问就变成询问子树了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=3000005;
int n,m,cnt,cc,tot,dfn;
int head[N],list[N],next[N],tree[N],deep[N],p[N],in[N],out[N],id[N],stack[N];
int pos[100005];
int l[N<<2],r[N<<2];
int ch[N][26];
char str[N];
int f[N<<1],mn[N<<2];
inline int read()
{
int a=0,f=1; char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1; c=getchar();}
while (c>='0'&&c<='9') {a=a*10+c-'0'; c=getchar();}
return a*f;
}
inline void print(int x)
{
if (!x) {puts("0"); return;}
char ch[10];
int top=0;
while (x) ch[++top]=x%10+'0',x/=10;
while (top) putchar(ch[top--]);
puts("");
}
inline void insert(int x,int y)
{
next[++cc]=head[x];
head[x]=cc;
list[cc]=y;
}
inline bool cmp(int a,int b)
{
return in[a]<in[b];
}
inline void add_string(int id)
{
scanf("%s",str);
int c,now=1,len=strlen(str);
for (int i=0;i<len;i++)
{
c=str[i]-'a';
if (ch[now][c]) now=ch[now][c];
else now=ch[now][c]=++cnt;
}
pos[id]=now;
}
inline void build_fail()
{
queue<int> q;
q.push(1);
while (!q.empty())
{
int x=q.front(); q.pop();
for (int i=0;i<26;i++)
if (ch[x][i])
{
int k=p[x];
while (!ch[k][i]) k=p[k];
p[ch[x][i]]=ch[k][i];
q.push(ch[x][i]);
}
}
}
void dfs(int x)
{
in[x]=++dfn;
f[id[x]=++tot]=x;
for (int i=head[x];i;i=next[i])
{
deep[list[i]]=deep[x]+1;
dfs(list[i]);
f[++tot]=x;
}
out[x]=dfn;
}
inline int lowbit(int i)
{
return (i&(-i));
}
inline void add(int x,int val)
{
for (int i=x;i<=cnt;i+=lowbit(i))
tree[i]+=val;
}
inline int query(int x)
{
int tmp=0;
for (int i=x;i;i-=lowbit(i))
tmp+=tree[i];
return tmp;
}
inline int Min(int x,int y)
{
return deep[x]<deep[y]?x:y;
}
void build(int k,int x,int y)
{
l[k]=x; r[k]=y;
if (l[k]==r[k]) {mn[k]=f[l[k]]; return;}
int mid=l[k]+r[k]>>1;
build(k<<1,x,mid); build(k<<1|1,mid+1,y);
mn[k]=Min(mn[k<<1],mn[k<<1|1]);
}
int find(int k,int x,int y)
{
if (l[k]==x&&r[k]==y) return mn[k];
int mid=l[k]+r[k]>>1;
if (y<=mid) return find(k<<1,x,y);
else if (x>mid) return find(k<<1|1,x,y);
else return Min(find(k<<1,x,mid),find(k<<1|1,mid+1,y));
}
inline int lca(int l,int r)
{
l=id[l]; r=id[r];
if (l>r) swap(l,r);
return find(1,l,r);
}
int main()
{
n=read(); cnt=1;
for (int i=0;i<26;i++) ch[0][i]=1;
for (int i=1;i<=n;i++) add_string(i);
build_fail();
for (int i=2;i<=cnt;i++) insert(p[i],i);
dfs(1);
build(1,1,tot);
m=read();
while (m--)
{
int opt=read();
if (opt==1)
{
scanf("%s",str);
int c,now=1,top=0,len=strlen(str);
for (int i=0;i<len;i++)
{
c=str[i]-'a';
while (!ch[now][c]) now=p[now];
now=ch[now][c];
if (now!=1) stack[++top]=now;
}
sort(stack+1,stack+top+1,cmp);
for (int i=1;i<=top;i++) add(in[stack[i]],1);
for (int i=1;i<top;i++) add(in[lca(stack[i],stack[i+1])],-1);
}
else
{
int x=read();
print(query(out[pos[x]])-query(in[pos[x]]-1));
}
}
return 0;
}