题目分析
这是一道有趣的解方程题。为了便于求解,设方程 f(x)=ax3+bx2+cx+d=0f(x)=ax3+bx2+cx+d=0f(x)=ax3+bx2+cx+d=0,设根的值域(-100至100之间)中有 xxx, 其左右两边相距 0.00050.00050.0005 的地方有 x1x1x1 和 x2x2x2
两个数,即 x1=x−0.0005x1=x-0.0005x1=x−0.0005,x2=x+0.0005x2=x+0.0005x2=x+0.0005。只要x1x1x1 和 x2x2x2 间的距离满足精度要求(精确到小数点后 222 位)。因此我们就可以使用暴力枚举。
AC代码
#include<bits/stdc++.h>
using namespace std;
double a,b,c,d;
int main() {
cin>>a>>b>>c>>d;
for(double i=-100;i<=100;i+=0.001){
double j=i+0.001;
double y1=a*i*i*i+b*i*i+c*i+d;
double y2=a*j*j*j+b*j*j+c*j+d;
if(y1*y2<=0){
cout<<fixed<<setprecision(2)<<i<<" ";
}
}
}