探秘阿里云Tablestore:大数据存储与查询的神器

一、引言

在大数据时代,数据量呈爆炸式增长,数据类型也日益丰富多样,这对数据库技术提出了前所未有的挑战。传统的关系型数据库在应对海量数据存储、高并发读写以及复杂数据分析时,往往显得力不从心,难以满足企业日益增长的业务需求。为了解决这些问题,各种新型数据库技术应运而生,阿里云 Tablestore 便是其中的佼佼者。

阿里云 Tablestore 是一款构建在阿里云飞天分布式系统之上的分布式 NoSQL 数据存储服务 ,它专为海量结构化数据的存储和实时访问而设计,具备诸多卓越的特性和优势。在如今数据驱动业务发展的时代,阿里云 Tablestore 能够为企业提供可靠、高效的数据管理解决方案,助力企业在激烈的市场竞争中脱颖而出。接下来,让我们深入了解阿里云 Tablestore,探索它是如何在大数据领域发挥重要作用的。

二、阿里云 Tablestore 是什么

阿里云 Tablestore 是阿里云自研的结构化数据存储服务,专为应对海量结构化数据的存储与快速查询分析而设计。它构建在飞天分布式系统之上,具备强大的分布式存储和索引引擎,能够实现 PB 级存储、千万 TPS(每秒事务处理量)以及毫秒级延迟的卓越服务能力 ,为企业提供了高效、可靠的数据管理解决方案。

Tablestore 的一大显著特点是其多模型支持。它提供了兼容 HBase 的 WideColumn 模型,该模型采用三维数据结构,在行与列的二维基础上增加了时间维度,属性列可以拥有多个值,每个值对应一个时间戳作为版本,且每一行 Schema-Free,无需强格式定义,能灵活应对数据结构的变化,适用于存储元数据和大数据等场景,满足对数据自动化生命周期管理的需求。例如,在电商领域,可用于存储海量的订单数据,订单的各种属性都能方便地以宽列形式存储,并且不同版本的订单信息(如修改记录)也能得以保存。

同时,Tablestore 还拥有消息模型 Timeline 和时空模型 Timestream 。Timeline 模型主要用于消息数据,能够抽象出支撑海量 Topic 的轻量级消息队列,满足消息系统中海量消息存储和同步的需求,确保消息的永久存储,且消息写入和同步性能不受数据规模影响,在 IM 聊天、评论、跟帖和点赞等 Feed 流信息存储方面表现出色,钉钉海量消息同步就依赖于该模型。而 Timestream 模型则专注于时序和时空数据,能提供 PB 级数据存储,打造多租户的时序数据库底层存储,满足物联网设备监控、设备采集数据、机器监控数据等场景对高并发写入、低成本海量数据存储以及灵活查询分析的需求,像智能交通系统中车辆的轨迹数据就可借助此模型进行高效管理和分析。

三、核心特性

(一)强大性能

阿里云 Tablestore 具备令人瞩目的强大性能,在存储容量上,单表支持 PB 级别的数据存储 ,能够容纳海量的数据,满足企业在数据量不断增长情况下的存储需求。在数据处理速度方面,它可以实现千万 TPS(每秒事务处理量) ,即使面对高并发的读写请求,也能快速响应,确保系统的高效运行。同时,其延迟控制在毫秒级 ,用户几乎感受不到数据查询和操作的等待时间,这使得实时性要求较高的业务场景,如电商的实时交易记录查询、金融的实时行情数据获取等,都能得到很好的支持。以一个超大型电商平台为例,在促销活动期间,每秒产生的订单数据量巨大,Tablestore 凭借其强大性能,能够快速存储这些订单信息,并在用户查询订单状态时,迅速返回结果,保障了购物体验的流畅性。

(二)灵活数据模型

Tablestore 提供了多种灵活的数据模型,以适应不同的业务场景。其中,宽表模型(WideColumn) 兼容 HBase,采用三维数据结构,在行与列的二维基础上增加了时间维度,属性列可以拥有多个值,每个值对应一个时间戳作为版本,且每一行 Schema-Free,无需强格式定义,这种特性使得数据结构可以根据业务需求灵活变化。例如在物联网场景中,设备会不断产生各种类型的数据,数据格式和属性可能随时改变,宽表模型就能够很好地存储这些设备数据,包括设备的实时状态、历史运行数据等 。

消息模型(Timeline) 主要用于消息数据存储,能抽象出支撑海量 Topic 的轻量级消息队列。在社交网络中,用户的评论、点赞、跟帖等消息量巨大,Timeline 模型可以高效地存储和管理这些 Feed 流信息,并且确保消息的有序性和实时同步,钉钉海量消息同步就是基于这一模型实现的 。

时空模型(Timestream) 专注于时序和时空数据,能够提供 PB 级数据存储,满足物联网设备监控、设备采集数据、机器监控数据等场景对高并发写入、低成本海量数据存储以及灵活查询分析的需求。例如在智能交通系统中,车辆的行驶轨迹数据包含时间和空间信息,Timestream 模型可以对这些数据进行有效的组织和存储,方便后续对交通流量、车辆位置等信息进行分析和监控 。

(三)高扩展性与弹性

通过数据分片和负载均衡技术,Tablestore 实现了存储的无缝扩展。当表数据量不断增大时,它会自动进行数据分区的调整,为该表配置更多的存储资源,无需人工干预。以一个快速发展的互联网企业为例,初期业务数据量较小,Tablestore 能够轻松应对。随着业务的不断拓展,用户数量和数据量呈指数级增长,Tablestore 可以自动感知数据量的变化,动态地对数据进行分片处理,并将负载均衡到更多的服务器节点上,保证系统的性能不受影响 。

在面对业务高峰期和低谷期时,Tablestore 的弹性优势也得以体现。在业务高峰期,如电商的促销活动期间,系统能够自动分配更多资源来处理高并发请求;而在业务低谷期,又可以回收多余的资源,降低成本。这种弹性扩展和收缩的能力,使得企业能够根据实际业务需求灵活使用资源,避免资源浪费 。

(四)数据安全保障

在数据安全方面,Tablestore 提供了全面的保障措施。它具备表级别和 API 级别的鉴权和授权机制 ,通过严格的权限控制,只有被授权的用户或应用才能访问相应的数据表和执行特定的 API 操作,实现了用户级别资源隔离。例如,企业可以根据员工的职责和业务需求,为不同员工分配不同的权限,有的员工只能读取特定表的数据,有的员工则可以进行数据写入和修改操作 。

Tablestore 还支持 STS 临时授权和自定义权限认证及主子账号功能 ,进一步增强了权限管理的灵活性和安全性。对于一些临时的业务需求,如第三方合作伙伴需要在特定时间段内访问部分数据,就可以通过 STS 临时授权来实现,授权到期后自动失去访问权限 。

在网络访问控制方面,Tablestore 支持互联网、ECS 内网及 VPC 私有网络访问 ,并提供了详细的网络访问控制功能。企业可以根据自身的安全策略,限制对表格存储实例的网络访问来源,例如只允许特定 VPC 内的服务器访问,或者禁止公网访问,从而有效防止数据泄露和非法访问 。

四、应用场景

(一)物联网

在物联网领域,设备会不断产生大量的时序数据,阿里云 Tablestore 凭借其出色的性能和灵活的数据模型,能够很好地满足这些数据的存储需求。以车联网为例,每辆智能汽车都配备了众多传感器,这些传感器会实时采集车辆的速度、位置、行驶方向、发动机状态等数据 。一辆车一天产生的数据量可能就达到 GB 级别,对于一个拥有数百万辆车辆的车联网平台来说,数据量更是巨大。Tablestore 的时空模型(Timestream) 可以轻松应对这种 PB 级数据规模以及千万级 QPS(每秒查询率)的存储需求 。通过该模型,车辆的轨迹数据、传感器数据等能够被高效地存储和管理,方便后续进行车辆状态监控、行驶路径规划、故障预测等操作 。例如,通过分析车辆的历史轨迹数据,可以优化城市交通流量,提高道路通行效率;通过实时监测车辆的传感器数据,能够及时发现车辆的潜在故障,提前进行预警和维护 。

在智能家居场景中,各种智能设备如智能摄像头、智能门锁、智能家电等也会产生大量数据 。这些设备的数据不仅量大,而且对读写性能和实时性要求较高。Tablestore 可以通过其宽表模型和时序模型,将设备的状态数据、操作记录等进行存储 。比如,智能摄像头拍摄的视频元数据、智能家电的运行状态数据等,都能存储在 Tablestore 中。用户可以随时通过手机应用查询设备的状态,Tablestore 能够快速响应查询请求,返回最新的设备信息 。同时,通过对这些数据的分析,还可以实现智能家居的自动化控制,根据用户的生活习惯自动调整设备的运行模式,提升用户的生活便利性和舒适度 。

(二)社交互联网

社交互联网中存在着海量的社交信息,阿里云 Tablestore 在存储和管理这些信息方面发挥着重要作用。以 IM(即时通讯)聊天场景为例,每天都会产生数以亿计的聊天消息,这些消息不仅需要高效地存储,还需要保证实时同步和快速检索 。Tablestore 的消息模型(Timeline) 能够抽象出支撑海量 Topic 的轻量级消息队列,满足 IM 系统对海量消息存储和同步的需求 。它可以确保消息的有序性,并且消息写入和同步性能不受数据规模影响 。例如,在一款热门社交应用中,用户之间的聊天消息被实时存储到 Tablestore 中,当用户切换聊天窗口或者重新登录时,能够迅速获取到之前的聊天记录,保证了聊天体验的连贯性 。

在 Feed 流场景中,用户的评论、点赞、跟帖等社交互动信息同样是海量的 。Tablestore 能够存储这些 Feed 流信息,并通过其索引能力,实现对这些信息的快速查询和分析 。比如,在一个社交媒体平台上,用户发布的动态以及其他用户对该动态的评论、点赞等信息都存储在 Tablestore 中 。当用户浏览自己的关注列表时,Tablestore 可以根据用户的请求,快速筛选出相关的动态和互动信息,并按照时间顺序展示给用户 。同时,平台运营者还可以利用 Tablestore 对这些数据进行分析,了解用户的兴趣偏好和社交行为,从而优化平台的内容推荐算法,提高用户的参与度和粘性 。

(三)大数据分析

阿里云 Tablestore 与主流的计算引擎紧密对接,为大数据分析提供了强大的支持,能够帮助企业充分挖掘数据价值。以电商平台为例,平台上积累了海量的交易数据,包括用户信息、商品信息、订单信息、支付信息等 。这些数据对于电商企业来说是宝贵的财富,通过对它们进行分析,可以实现精准营销、商品推荐、库存管理等功能 。Tablestore 可以作为数据存储的底层平台,存储这些海量的电商数据 。同时,它与 Spark、Flink、MaxCompute 等计算引擎集成 ,能够方便地进行数据的读取和处理。例如,利用 Spark 可以对 Tablestore 中的订单数据进行统计分析,计算出不同地区、不同时间段的商品销售情况,从而为企业的市场营销策略提供数据支持 。通过 Flink 进行实时流计算,可以实时监控用户的购买行为,当发现用户有潜在的购买需求时,及时推送相关的商品推荐信息,提高用户的购买转化率 。

在电商的商品推荐场景中,Tablestore 也发挥着关键作用。通过对用户的浏览历史、购买记录等数据进行分析,结合机器学习算法,可以构建用户画像和商品推荐模型 。Tablestore 存储着这些分析所需的原始数据以及模型训练的中间结果和最终模型 。当用户访问电商平台时,系统可以根据用户的实时行为和存储在 Tablestore 中的用户画像,从 Tablestore 中快速获取相关的商品推荐信息,并展示给用户,实现个性化的商品推荐,提升用户的购物体验和平台的销售额 。

五、使用教程

(一)开通与创建实例

在使用阿里云 Tablestore 之前,首先需要开通该服务并创建实例 。如若未注册账号,可以联系博主申请关联注册,后续购买享受优惠折扣,另外开通服务的操作较为简单,您只需登录阿里云表格存储的产品详情页,在页面中找到 “立即开通” 按钮并单击 。在弹出的页面中,仔细阅读相关协议,确认无误后再次单击 “立即开通” 。开通完成后,单击 “管理控制台”,即可进入表格存储控制台 。

创建实例是使用 Tablestore 的关键步骤,实例相当于一个数据库,在实例内可以进行表和数据的操作与管理 。以 VCU 模式为例,登录表格存储控制台后,能看到 “创建实例” 的选项,单击它 。在弹出的购买方式对话框中,选择 VCU 模式(原预留模式),然后单击 “前往开通” 。在表格存储标准实例页面,需要对一系列配置项进行选择 。地域选项决定了实例部署的地理位置,您可根据业务需求和用户分布来选择合适的地域,不同地域的网络延迟和数据存储成本可能有所差异 。预留 VCU 代表实例预留的计算资源,若只是体验,可将预留 VCU 修改为 0 。弹性能力选项建议选择开启,这样实例能够根据业务负载自动调整资源,提高资源利用率 。存储类型方面,体验时可选择高性能存储,以获得更好的读写性能 。实例名称由系统自动生成,无法自定义,但您可以自定义实例别名,方便识别和管理 。此外,还可以填写实例描述信息,记录实例的用途和相关说明 。资源组和标签在体验时可保持默认设置 。购买时长也可采用默认值 。确认所有配置无误后,单击 “立即购买” 。在确认订单页面,再次核对配置详情,并仔细阅读服务协议,然后单击 “去支付” 。在支付页面,确认订单信息后单击 “订购” 。支付完成后,单击 “管理控制台” 回到表格存储控制台 。此时,创建好的实例会显示在控制台中,您可以单击实例名称或 “实例管理” 进入实例详情页签,查看实例的访问地址(Endpoint)、实例名称等重要信息 。需要注意的是,为了保证资源访问安全,新创建的实例默认不开启公网访问 。如果您需要在公网访问表格存储实例,需在实例管理的网络管理页签中,选中 “公网” 选项,并单击 “设置” 保存配置 。

(二)数据模型选择与表结构设计

阿里云 Tablestore 提供了多种数据模型,每种模型都有其独特的特点,适用于不同的业务场景,因此选择合适的数据模型至关重要 。

宽表模型(WideColumn) 是 Tablestore 的基础数据模型,它采用三维数据结构,在传统的行与列二维基础上增加了时间维度 。属性列可以拥有多个值,每个值对应一个时间戳作为版本,且每一行 Schema-Free,无需严格的格式定义 。这种模型非常适合存储元数据和大数据等场景,因为它能够灵活应对数据结构的变化 。例如,在存储电商商品的元数据时,商品的属性可能会不断更新和扩展,宽表模型就可以轻松存储不同版本的商品属性信息 。

消息模型(Timeline) 主要针对消息数据,能抽象出支撑海量 Topic 的轻量级消息队列 。它满足消息系统中海量消息存储和同步的需求,确保消息的永久存储,且消息写入和同步性能不受数据规模影响 。在社交应用的 IM 聊天场景中,用户之间发送的大量聊天消息就可以使用消息模型进行高效存储和管理 。

时空模型(Timestream) 专注于时序和时空数据,具备 PB 级数据存储能力,可打造多租户的时序数据库底层存储 。它满足物联网设备监控、设备采集数据、机器监控数据等场景对高并发写入、低成本海量数据存储以及灵活查询分析的需求 。例如,在智能工厂中,各种设备的运行状态数据包含时间和设备位置等信息,时空模型能够很好地组织和存储这些数据 。

在设计表结构时,如果使用宽行模型,有几个关键原则需要遵循 。首先是避免热点问题,热点会导致系统性能下降,甚至出现瓶颈 。可以通过合理设计主键来分散数据的读写压力 。例如,在一个订单表中,如果将订单 ID 作为唯一主键,可能会导致订单 ID 连续生成时出现热点,此时可以将订单 ID 和时间戳组合作为主键,使数据在存储时更均匀地分布 。其次,要根据业务查询需求设计主键顺序 。如果业务经常需要按照时间范围查询订单,那么将时间戳放在主键的前面,能够提高查询效率 。另外,还需要考虑数据的生命周期管理,根据业务需求设置合适的 TTL(Time To Live),让系统自动清理过期数据,节省存储空间 。

(三)数据读写操作

阿里云 Tablestore 的读写接口简单且易于使用,主要分为单行数据操作与多行数据操作 。

单行数据操作接口包括 GetRow(获取单行数据)、PutRow(插入或更新单行数据)、DeleteRow(删除单行数据)等 。以使用 Java SDK 进行单行数据操作的代码示例如下:

import com.aliyun.ots.ClientException;
import com.aliyun.ots.OTSClient;
import com.aliyun.ots.OTSException;
import com.aliyun.ots.model.*;

public class TablestoreExample {
    private static final String ENDPOINT = "yourEndpoint";
    private static final String ACCESS_KEY_ID = "yourAccessKeyId";
    private static final String ACCESS_KEY_SECRET = "yourAccessKeySecret";
    private static final String INSTANCE_NAME = "yourInstanceName";
    private static final String TABLE_NAME = "yourTableName";

    public static void main(String[] args) {
        OTSClient client = new OTSClient(ENDPOINT, ACCESS_KEY_ID, ACCESS_KEY_SECRET, INSTANCE_NAME);

        // 插入单行数据
        PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
        primaryKeyBuilder.addPrimaryKeyColumn("id", PrimaryKeyValue.fromLong(1));
        RowPutChange rowPutChange = new RowPutChange(TABLE_NAME, primaryKeyBuilder.build());
        rowPutChange.addColumn("name", ColumnValue.fromString("John"));
        rowPutChange.addColumn("age", ColumnValue.fromLong(30));
        try {
            client.putRow(new PutRowRequest(rowPutChange));
            System.out.println("Insert row successfully.");
        } catch (OTSException e) {
            System.err.println("PutRow failed, ErrorCode: " + e.getErrorCode() + ", ErrorMessage: " + e.getMessage());
        } catch (ClientException e) {
            System.err.println("PutRow failed, ErrorMessage: " + e.getMessage());
        }

        // 获取单行数据
        PrimaryKey primaryKey = primaryKeyBuilder.build();
        GetRowRequest getRowRequest = new GetRowRequest(TABLE_NAME, primaryKey);
        try {
            GetRowResponse getRowResponse = client.getRow(getRowRequest);
            Row row = getRowResponse.getRow();
            System.out.println("Get row successfully: " + row);
        } catch (OTSException e) {
            System.err.println("GetRow failed, ErrorCode: " + e.getErrorCode() + ", ErrorMessage: " + e.getMessage());
        } catch (ClientException e) {
            System.err.println("GetRow failed, ErrorMessage: " + e.getMessage());
        }

        // 删除单行数据
        RowDeleteChange rowDeleteChange = new RowDeleteChange(TABLE_NAME, primaryKey);
        try {
            client.deleteRow(new DeleteRowRequest(rowDeleteChange));
            System.out.println("Delete row successfully.");
        } catch (OTSException e) {
            System.err.println("DeleteRow failed, ErrorCode: " + e.getErrorCode() + ", ErrorMessage: " + e.getMessage());
        } catch (ClientException e) {
            System.err.println("DeleteRow failed, ErrorMessage: " + e.getMessage());
        }

        client.shutdown();
    }
}

在上述代码中,首先创建了 OTSClient 对象,用于与 Tablestore 服务进行交互 。然后通过 PrimaryKeyBuilder 构建主键,使用 RowPutChange 进行数据插入操作,将 id 为 1,name 为 John,age 为 30 的数据插入到表中 。接着使用 GetRowRequest 获取刚刚插入的数据,并使用 RowDeleteChange 删除该数据 。

多行数据操作接口包括 BatchGetRow(批量获取多行数据)、BatchWriteRow(批量写入或更新多行数据)等 。以下是使用 Java SDK 进行多行数据操作的代码示例:

import com.aliyun.ots.ClientException;
import com.aliyun.ots.OTSClient;
import com.aliyun.ots.OTSException;
import com.aliyun.ots.model.*;

import java.util.ArrayList;
import java.util.List;

public class TablestoreBatchExample {
    private static final String ENDPOINT = "yourEndpoint";
    private static final String ACCESS_KEY_ID = "yourAccessKeyId";
    private static final String ACCESS_KEY_SECRET = "yourAccessKeySecret";
    private static final String INSTANCE_NAME = "yourInstanceName";
    private static final String TABLE_NAME = "yourTableName";

    public static void main(String[] args) {
        OTSClient client = new OTSClient(ENDPOINT, ACCESS_KEY_ID, ACCESS_KEY_SECRET, INSTANCE_NAME);

        // 批量插入数据
        List<RowPutChange> rowPutChangeList = new ArrayList<>();
        for (int i = 2; i <= 4; i++) {
            PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
            primaryKeyBuilder.addPrimaryKeyColumn("id", PrimaryKeyValue.fromLong(i));
            RowPutChange rowPutChange = new RowPutChange(TABLE_NAME, primaryKeyBuilder.build());
            rowPutChange.addColumn("name", ColumnValue.fromString("User" + i));
            rowPutChange.addColumn("age", ColumnValue.fromLong(20 + i));
            rowPutChangeList.add(rowPutChange);
        }
        BatchWriteRowRequest batchWriteRowRequest = new BatchWriteRowRequest();
        batchWriteRowRequest.addRowChanges(rowPutChangeList);
        try {
            client.batchWriteRow(batchWriteRowRequest);
            System.out.println("Batch insert rows successfully.");
        } catch (OTSException e) {
            System.err.println("BatchWriteRow failed, ErrorCode: " + e.getErrorCode() + ", ErrorMessage: " + e.getMessage());
        } catch (ClientException e) {
            System.err.println("BatchWriteRow failed, ErrorMessage: " + e.getMessage());
        }

        // 批量获取数据
        List<PrimaryKey> primaryKeyList = new ArrayList<>();
        for (int i = 2; i <= 4; i++) {
            PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
            primaryKeyBuilder.addPrimaryKeyColumn("id", PrimaryKeyValue.fromLong(i));
            primaryKeyList.add(primaryKeyBuilder.build());
        }
        BatchGetRowRequest batchGetRowRequest = new BatchGetRowRequest();
        batchGetRowRequest.addGetRow(TABLE_NAME, primaryKeyList);
        try {
            BatchGetRowResponse batchGetRowResponse = client.batchGetRow(batchGetRowRequest);
            List<Row> rows = batchGetRowResponse.getRows(TABLE_NAME);
            System.out.println("Batch get rows successfully: " + rows);
        } catch (OTSException e) {
            System.err.println("BatchGetRow failed, ErrorCode: " + e.getErrorCode() + ", ErrorMessage: " + e.getMessage());
        } catch (ClientException e) {
            System.err.println("BatchGetRow failed, ErrorMessage: " + e.getMessage());
        }

        client.shutdown();
    }
}

这段代码展示了如何使用 BatchWriteRowRequest 批量插入三条数据,以及使用 BatchGetRowRequest 批量获取这三条数据 。通过批量操作,可以减少与 Tablestore 服务的交互次数,提高数据读写效率 。

(四)多元索引使用

多元索引在阿里云 Tablestore 中起着至关重要的作用,它能够大大增强数据的查询能力 。Tablestore 的宽行模型本身设计只提供了相对简单的数据查询能力,而在实际业务场景中,往往需要进行较为多维度的查询,尤其是非主键查询,多元索引正好满足了这一需求 。

多元索引的主要作用是在原本的数据(主表)基础上,提供额外的索引数据结构,使得查询可以基于更多的字段和条件进行 。例如,在一个用户信息表中,主表可能主要通过用户 ID 作为主键进行存储和查询 。但如果业务需求是根据用户的年龄范围、所在地区等条件进行查询,仅依靠主键查询就无法满足 。此时,通过创建多元索引,将年龄、地区等字段添加到索引中,就可以实现基于这些字段的高效查询 。

创建多元索引的方法有多种,可以通过控制台、命令行工具或 SDK 来完成 。以通过控制台创建多元索引为例,首先登录表格存储控制台,找到对应的实例和数据表 。在数据表的操作选项中,选择 “创建多元索引” 。在弹出的创建页面中,需要配置索引的相关信息 。索引名称是自定义的,用于标识该索引 。然后需要定义索引字段,选择要添加到索引中的列,并设置字段的数据类型、是否开启索引、是否开启排序与统计聚合功能等 。例如,对于一个 “年龄” 字段,设置其数据类型为 LONG,开启索引,并且根据业务需求决定是否开启排序与统计聚合功能 。如果业务需要对年龄进行排序查询,就需要开启排序功能 。

在创建多元索引时,还可以设置一些高级选项,如 RoutingFields(自定义路由字段) 。可以选择部分主键列作为路由字段,一般情况下只需要设置一个 。如果设置多个路由键,系统会将多个路由键的值拼接成一个值 。在进行索引数据写入时,系统会根据路由字段的值计算索引数据的分布位置,路由字段的值相同的记录会被索引到相同的数据分区中 ,这样可以提高查询和写入的效率 。

使用多元索引进行查询时,查询方式非常灵活 。目前支持精确查询、范围查询、前缀查询、匹配查询、通配符查询、短语匹配查询、分词字符串查询,并通过布尔与、或组合多条件查询 。以使用 Python SDK 进行精确查询为例,代码如下:

from aliyun.ots.api import *
from aliyun.ots.otsservice import *

# 初始化OTSClient
client = OTSClient('yourEndpoint', 'yourAccessKeyId', 'yourAccessKeySecret', 'yourInstanceName')

# 定义查询条件
query = TermQuery('age', 25)  # 查询年龄为25的数据
search_response = client.search('yourTableName', 'yourIndexName', SearchQuery(query, limit=100, get_total_count=True),
                                ColumnsToGet(return_type=ColumnReturnType.ALL))

print('request_id : %s' % search_response.request_id)
print('is_all_succeed : %s' % search_response.is_all_succeed)
print('total_count : %s' % search_response.total_count)
print('rows : %s' % search_response.rows)

在上述代码中,首先初始化了 OTSClient,然后使用 TermQuery 定义了精确查询条件,即查询年龄为 25 的数据 。通过 client.search 方法执行查询,返回的结果包含了查询请求 ID、是否查询成功、匹配的总行数以及查询到的数据行 。

再比如,进行多条件组合查询时,可以使用布尔查询 。假设要查询年龄在 20 到 30 之间,且所在地区为 “北京” 的用户,代码示例如下:

from aliyun.ots.api import *
from aliyun.ots.otsservice import *

# 初始化OTSClient
client = OTSClient('yourEndpoint', 'yourAccessKeyId', 'yourAccessKeySecret', 'yourInstanceName')

# 定义查询条件
age_range_query = RangeQuery('age', 20, 30)
city_query = TermQuery('city', '北京')
bool_query = BoolQuery()
bool_query.add_must(age_range_query)
bool_query.add_must(city_query)

search_response = client.search('yourTableName', 'yourIndexName', SearchQuery(bool_query, limit=100, get_total_count=True),
                                ColumnsToGet(return_type=ColumnReturnType.ALL))

print('request_id : %s' % search_response.request_id)
print('is_all_succeed : %s' % search_response.is_all_succeed)
print('total_count : %s' % search_response.total_count)
print('rows : %s' % search_response.rows)

在这个示例中,首先定义了年龄范围查询条件 age_range_query 和城市精确查询条件 city_query,然后使用 BoolQuery 将这两个条件组合起来,通过 add_must 方法表示这两个条件都必须满足 。最后执行查询,获取符合条件的数据 。通过多元索引和灵活的查询方式,能够满足各种复杂业务场景下的数据查询需求,大大提高了数据的利用价值 。

六、与其他数据库对比

(一)与关系型数据库对比

关系型数据库,如 MySQL、Oracle 等,采用表格结构存储数据,遵循 ACID 原则(原子性、一致性、隔离性、持久性) ,具有强大的事务支持和成熟的数据一致性与完整性保障机制 。其数据存储在固定模式的表中,通过 SQL 语句进行复杂的关联查询 ,适用于对数据一致性要求极高、业务逻辑复杂且数据结构稳定的场景,如金融交易系统、ERP/CRM 系统等 。

阿里云 Tablestore 作为 NoSQL 数据库,与关系型数据库在多个方面存在显著差异 。在性能方面,Tablestore 具备高吞吐量和低延迟的特点,能够轻松应对海量数据的存储和高并发读写请求,单表可支持 PB 级存储和千万 TPS 。而关系型数据库在数据量增长到一定规模后,性能会出现明显下降,尤其是在高并发情况下,锁竞争等问题会导致响应延迟增加 。

从存储方式来看,关系型数据库以行式存储为主,数据按照行的顺序存储在磁盘上 。Tablestore 采用列式存储和压缩技术,将表的列进行分离,独立存储,减少了磁盘空间的占用和 I/O 操作,并且对数据进行压缩,降低了存储空间和传输开销 。

在应用场景上,Tablestore 适用于数据规模大、读写吞吐要求高、数据结构相对简单且无复杂跨表关联查询的场景,如物联网设备数据存储、社交互联网的海量消息存储等 。而关系型数据库更适合需要严格事务控制和复杂关联查询的业务系统 。

以电商订单处理为例,如果业务侧重于订单的快速记录和实时查询,对事务的要求相对较低,且数据量巨大,使用 Tablestore 可以快速存储订单信息,并在用户查询订单时迅速响应 。但如果涉及到订单的复杂统计分析,如按照不同维度(时间、地区、商品类别等)进行交叉统计,并且要求数据的强一致性,关系型数据库则更为合适,因为它能够利用 SQL 的强大查询功能进行复杂的数据处理 。

(二)与键值存储对比

键值存储,如 Redis、Memcached 等,是一种简单的数据存储结构,将数据以键值对的形式存储 。它的读写速度极快,通常用于缓存数据,以提高系统的响应速度 。由于其数据结构简单,查询操作主要基于键进行,因此在数据规模较大时,也能保持较高的性能 。键值存储适用于对读写速度要求极高、数据结构简单且主要通过键进行访问的场景,如 Web 应用中的页面缓存、用户会话缓存等 。

与键值存储相比,Tablestore 的优势在于其丰富的数据模型和强大的查询能力 。键值存储只能通过键来获取值,查询方式较为单一 。Tablestore 不仅支持主键查询,还通过多元索引提供了多种灵活的查询方式,包括精确查询、范围查询、前缀查询、匹配查询等,并能通过布尔与、或组合多条件查询 。

在存储方式上,虽然键值存储也具有快速读写的特点,但它主要将数据存储在内存中,以牺牲内存空间来换取速度 。Tablestore 则采用分布式存储,支持 PB 级数据存储,并且具备数据自动冷热分层存储能力,访问频次高的数据存储在热存储层,满足高性能访问需求;访问频次极低的数据存储在冷存储层,满足低成本存储需求 。

在应用场景方面,键值存储主要用于缓存场景,解决系统的性能瓶颈 。Tablestore 则更侧重于海量结构化数据的存储和复杂查询分析,例如在一个大型电商系统中,Redis 可以用于缓存热门商品信息,快速响应用户的商品查询请求 。而 Tablestore 则用于存储所有商品的详细信息、用户的购买历史等结构化数据,以便进行数据分析和挖掘 。

(三)与文档型数据库对比

文档型数据库,如 MongoDB,以文档的形式存储数据,每个文档可以看作是一个键值对的集合,文档之间的结构可以不同,具有较高的灵活性 。它支持丰富的查询语言,能够进行复杂的查询操作,适用于存储半结构化数据,如日志数据、用户配置文件等,在 Web 应用开发和大数据分析领域有广泛应用 。

Tablestore 与文档型数据库在性能上各有优劣 。在高并发写入和读取方面,Tablestore 凭借其分布式架构和优化的存储引擎,能够实现千万 TPS 和毫秒级延迟 。文档型数据库在数据量较大时,写入和查询性能可能会受到一定影响 。

从数据存储方式来看,文档型数据库以文档为单位存储数据,数据结构相对灵活,但在存储大规模结构化数据时,可能会存在空间利用率不高的问题 。Tablestore 采用宽表模型等多种数据模型,对于结构化数据的存储和管理更为高效,并且通过列式存储和压缩技术,有效减少了存储空间的占用 。

在应用场景上,文档型数据库更适合数据结构变化频繁、对数据灵活性要求较高的场景 。Tablestore 则更侧重于对海量结构化数据的高效存储和实时访问,以及复杂的查询分析 。例如,在一个内容管理系统中,MongoDB 可以用于存储文章、页面等文档数据,因为这些数据的结构可能会根据不同的内容类型而有所变化 。而 Tablestore 可以用于存储用户的行为数据、系统的操作日志等结构化数据,通过多元索引实现对这些数据的多维度查询和分析 。

七、总结与展望

阿里云 Tablestore 作为一款功能强大的分布式 NoSQL 数据存储服务,在性能、数据模型、扩展性和数据安全等方面展现出了卓越的优势。它具备 PB 级存储、千万 TPS 以及毫秒级延迟的强大性能,能够轻松应对海量结构化数据的存储和实时访问需求。灵活的数据模型,包括宽表模型、消息模型和时空模型,使其能够适应物联网、社交互联网、大数据分析等多种复杂的应用场景 。高扩展性与弹性保证了系统在数据量和业务负载变化时能够自动调整资源,实现无缝扩展和高效运行 。全面的数据安全保障措施,从权限控制到网络访问控制,为企业的数据安全提供了坚实的后盾 。

随着大数据和云计算技术的不断发展,Tablestore 有望在更多领域得到应用和拓展。在物联网领域,随着设备数量的持续增长和数据量的爆发式增长,Tablestore 将凭借其对时序数据的高效处理能力,为智能交通、智能家居、工业物联网等提供更强大的数据支持 。在社交互联网领域,它将继续助力社交应用存储和管理海量的社交信息,提升用户体验 。在大数据分析领域,Tablestore 与主流计算引擎的深度集成,将为企业挖掘数据价值提供更便捷、高效的解决方案 。

对于广大开发者和企业来说,阿里云 Tablestore 是一个值得尝试和信赖的数据存储工具 。无论是初创企业还是大型企业,都可以根据自身的业务需求,利用 Tablestore 的优势,构建高效、可靠的数据管理系统 。希望通过本文的介绍,能让更多人了解 Tablestore 的强大功能和应用潜力,在实际项目中充分发挥它的价值 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值