YOLOv11实战,使用YOLOv11训练自己的数据集和推理(附YOLOv11网络结构图)

2024年计算机视觉领域的颠覆性突破,YOLOv11以22%的参数量减少0.3%的mAP提升重新定义实时目标检测的边界

本文将手把手带你完成YOLOv11的全流程实战,包含环境配置数据准备模型训练推理部署创新优化方案,并深度解析其网络架构设计思想。


一、YOLOv11核心创新解析

1.1 性能突破

YOLOv11由Ultralytics于2024年下半年发布,在COCO数据集上:

  • Extra Large模型mAP50-95达54.7%(较v10提升0.3%)
  • Nano模型推理延迟仅1.55ms/帧(低于v10的1.84ms)
  • 模型参数减少22%的同时精度提升,实现更高计算效率
1.2 网络结构图与核心模块
graph TD
    A[Input 640×640×3] --> B[Backbone]
    B -->
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芯作者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值