深度学习J4周:ResNet与DenseNet结合探索

任务类型:自主探索

任务难度:偏难

任务描述:

1.根据J1-J3的内容自由探索ResNet与DenseNet结合的可能性。

2.是否可以根据两种的特性构建一个新的模型框架?

3.请用之前的任一图像识别任务验证改进后模型的效果

ResNet与DenseNet的框架图

 

 数据集:前几周的鸟类数据集

深度学习环境:pytorch

语言环境:python3.8

编译器:pycharm

一、论文

1.DPN(Dual Path Networks)

ResNet,ResNeXt,DenseNet等网络在图像分类领域的效果显而易见,

DPN则融合了ResNeXt和DenseNet的核心思想,这里为什么不说是融合了ResNet和DenseNet,因为作者也用了group操作,而ResNeXt和ResNet的主要区别就在于group操作。                     
(原文链接:https://blog.csdn.net/chenyuping333/article/details/82453965)

优势:

The DPN-92 costs about 15% fewer parameters than ResNeXt-101 (32 4d), while the DPN-98 costs about 26% fewer parameters than ResNeXt-101 (64 4d).

DPN-92 consumes about 19% less FLOPs than ResNeXt-101(32 4d), and the DPN-98 consumes about 25% less FLOPs than ResNeXt-101(64 4d).

(参考365天深度学习训练营-第J4周:ResNet与DenseNet结合探索_densenet特征复用和resnet特征融合-CSDN博客

二、复现

(参考深度学习第J4周:ResNet与DenseNet结合探索_resnet和dcn结合-CSDN博客

1.1设置GPU

import os,PIL,random,pathlib
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
 
 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
print(device)

结果:

1.2导入数据集

data_dir = './第8天/bird_photos/'
data_dir = pathlib.Path(data_dir)
 
data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[2] for path in data_paths]
print(classeNames)
 
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)

结果:

 数据预处理:图形变换

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
 
test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
 
total_data = datasets.ImageFolder("./第8天/bird_photos/", transform=train_transforms)
print(total_data.class_to_idx)

结果:

1.3划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
 
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=0)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=0)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

结果:

2.模型代码

class Block(nn.Module):
    def __init__(self, in_channel, mid_channel, out_channel, dense_channel, stride, groups, is_shortcut=False):
        # in_channel,是输入通道数,mid_channel是中间经历的通道数,out_channels是经过一次板块之后的输出通道数。
        # dense_channels设置这个参数的原因就是一边进行着resnet方式的卷积运算,另一边也同时进行着dense的卷积计算,之后特征图融合形成新的特征图
        super().__init__()
        self.is_shortcut = is_shortcut
        self.out_channel = out_channel
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channel, mid_channel, kernel_size=1, bias=False),
            nn.BatchNorm2d(mid_channel),
            nn.ReLU()
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(mid_channel, mid_channel, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False),
            nn.BatchNorm2d(mid_channel),
            nn.ReLU()
        )
        self.conv3 = nn.Sequential(
            nn.Conv2d(mid_channel, out_channel+dense_channel, kernel_size=1, bias=False),
            nn.BatchNorm2d(out_channel+dense_channel)
        )
        if self.is_shortcut:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channel, out_channel+dense_channel, kernel_size=3, padding=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channel+dense_channel)
            )
        self.relu = nn.ReLU(inplace=True)
    
    def forward(self, x):
        a = x
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        if self.is_shortcut:
            a = self.shortcut(a)
        d = self.out_channel
        x = torch.cat([a[:,:d,:,:] + x[:,:d,:,:], a[:,d:,:,:], x[:,d:,:,:]], dim=1)
        x = self.relu(x)
        return x
 
 
class DPN(nn.Module):
    def __init__(self, cfg):
        super(DPN, self).__init__()
        self.group = cfg['group']
        self.in_channel = cfg['in_channel']
        mid_channels = cfg['mid_channels']
        out_channels = cfg['out_channels']
        dense_channels = cfg['dense_channels']
        num = cfg['num']
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, self.in_channel, 7, stride=2, padding=3, bias=False, padding_mode='zeros'),
            nn.BatchNorm2d(self.in_channel),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0)
        )
        self.conv2 = self._make_layers(mid_channels[0], out_channels[0], dense_channels[0], num[0], stride=1)
        self.conv3 = self._make_layers(mid_channels[1], out_channels[1], dense_channels[1], num[1], stride=2)
        self.conv4 = self._make_layers(mid_channels[2], out_channels[2], dense_channels[2], num[2], stride=2)
        self.conv5 = self._make_layers(mid_channels[3], out_channels[3], dense_channels[3], num[3], stride=2)
        self.pool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(cfg['out_channels'][3] + (num[3]+1) * cfg['dense_channels'][3], cfg['classes']) # fc层需要计算
    
    def _make_layers(self, mid_channel, out_channel, dense_channel, num, stride=2):
        layers = []
        layers.append(Block(self.in_channel, mid_channel, out_channel, dense_channel, stride=stride, groups=self.group, is_shortcut=True))
        # block_1里面is_shortcut=True就是resnet中的shortcut连接,将浅层的特征进行一次卷积之后与进行三次卷积的特征图相加
        # 后面几次相同的板块is_shortcut=False简单的理解就是一个多次重复的板块,第一次利用就可以满足浅层特征的利用,后面重复的不在需要
        self.in_channel = out_channel + dense_channel*2
        # 由于里面包含dense这种一直在叠加的特征图计算,
        # 所以第一次是2倍的dense_channel,后面每次一都会多出1倍,所以有(i+2)*dense_channel
        for i in range(1, num):
            layers.append(Block(self.in_channel, mid_channel, out_channel, dense_channel, stride=1, groups=self.group))
            self.in_channel = self.in_channel + dense_channel
            #self.in_channel = out_channel + (i+2)*dense_channel
        return nn.Sequential(*layers)
    
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv5(x)
        x = self.pool(x)
        x = torch.flatten(x, start_dim=1)
        x = self.fc(x)
        return x
 
 
def DPN92(n_class=10):
    cfg = {
        'group': 32,
        'in_channel': 64,
        'mid_channels': (96, 192, 384, 768),
        'out_channels': (256, 512, 1024, 2048),
        'dense_channels': (16, 32, 24, 128),
        'num': (3, 4, 20, 3),
        'classes': (n_class)
    }
    return DPN(cfg)
 
 
def DPN98(n_class=10):
    cfg = {
        'group': 40,
        'in_channel': 96,
        'mid_channels': (160, 320, 640, 1280),
        'out_channels': (256, 512, 1024, 2048),
        'dense_channels': (16, 32, 32, 128),
        'num': (3, 6, 20, 3),
        'classes': (n_class)
    }
    return DPN(cfg)

x = torch.randn(2, 3, 224, 224)
model = DPN98(4)
model.to(device)
import torchsummary as summary
summary.summary(model, (3, 224, 224))

部分结果:

3.训练运行

 
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)
 
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
 
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
 
        # 计算预测误差
        pred = model(X)  # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
 
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()  # 反向传播
        optimizer.step()  # 每一步自动更新
 
        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
 
    train_acc /= size
    train_loss /= num_batches
 
    return train_acc, train_loss
 
 
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)  # 批次数目
    test_loss, test_acc = 0, 0
 
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
 
            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)
 
            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
 
    test_acc /= size
    test_loss /= num_batches
 
    return test_acc, test_loss

 
import copy
 
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数
 
epochs = 10
 
train_loss = []
train_acc = []
test_loss = []
test_acc = []
 
best_acc = 0  # 设置一个最佳准确率,作为最佳模型的判别指标
 
for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    # adjust_learning_rate(optimizer, epoch, learn_rate)
 
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
 
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
 
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)
 
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
 
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
 
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
                          epoch_test_acc * 100, epoch_test_loss, lr))
 
# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)
 
print('Done')

 部分结果:(机子太响了只跑了四个回合)

打印训练图:

import matplotlib.pyplot as plt
# 隐藏警告
import warnings
 
warnings.filterwarnings("ignore")  # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率
 
epochs_range = range(epochs)
 
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
 
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
 
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

三.总结

一开始没有理解要求意思,搜索了博客,根据人家的内容去学习,比想放弃坚持了一点,也很羡慕别人能想到并成功运行,一点一点积累也是可以的。最近手头事也有些多,等忙完这一段,还是得多看论文和代码继续学习积累。谢谢学习训练营和其他小伙伴的博客。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值