1.安装Anaconda
Anaconda安装基本大家都会很容易,直接在ubantu中打开浏览器在官网下载对应系统版本的.sh文件即可。然后使用sh命令安装。
sudo sh /home/file_name/Anaconda3-5.0.1-Linux-x86_64.sh
安装成功后使用source ~/.bashrc添加环境变量,使用conda来测试是否安装成功。
e.g conda list
2.安装Tensorflow/Keras/PyTorch
这一步一般使用傻瓜式安装没问题的,亲测有效。
首先创建一个虚拟环境:conda create -n test_env python=3.6。在创建的环境test_env中安装需要的ML框架。
conda install tensorflow
pip install keras
conda install pytorch; pip install torchvision
激活虚拟环境:source activate test_env
测试是否安装成功:
python进入运行环境
测试tensorflow
import tensorflow as tf
H = constant('hi, xxx')
sess= Session()
sess.print(H)
测试pytorch
import torch
torch.Floattensor([1,2,3])
3.安装jupyter notebook并设置远程
在base环境中使用jupyter notebook --generate-config命令生成配置文件。
在虚拟环境test_env中运行命令:conda install ipykernel安装ipykernel来配置jupyter启动的内核。仍在该环境中执行命令:
python -m ipykernel install --user --name test_env --display-name "python(tetst_env)"将环境写入jupyter kernel中。
完成后配置远程访问:https://blog.csdn.net/qq_40256654/article/details/86468061
在base中使用jupyter notebook命令启动即可。