排序算法全解,为什么快排的时间波动特别大?

目录

排序算法全解,为什么快排的时间波动特别大?

一、总览与对比分析

二、快速排序

1、核心思想

2、算法特点

3、示例

三、归并排序

1、核心思想

2、算法特点

3、示例

四、堆排序

1、核心思想

2、算法特点

3、示例

五、排序方法对比与其他排序

六、总结


        作者:watermelo37

        CSDN全栈领域优质创作者、万粉博主、华为云云享专家、阿里云专家博主、腾讯云“创作之星”特邀作者、支付宝合作作者,全平台博客昵称watermelo37。

        一个假装是giser的coder,做不只专注于业务逻辑的前端工程师,Java、Docker、Python、LLM均有涉猎。

---------------------------------------------------------------------

温柔地对待温柔的人,包容的三观就是最大的温柔。

---------------------------------------------------------------------

排序算法全解,为什么快排的时间波动特别大?

一、总览与对比分析

        在本文中,我们将对各种排序算法进行总体比较,重点从以下几个维度展开:

  • 时间复杂度(平均、最坏、最好)

  • 空间复杂度

  • 稳定性

  • 是否原地排序

  • 是否适合大数据

  • 实际应用场景

算法最好时间复杂度平均时间复杂度最坏时间复杂度空间复杂度稳定性原地排序适用场景
快速排序O(n log n)O(n log n)O(n^2)O(log n)大多数通用场景
归并排序O(n log n)O(n log n)O(n log n)O(n)大数据、稳定需求
堆排序O(n log n)O(n log n)O(n log n)O(1)内存受限、无稳定性需求
插入排序O(n)O(n^2)O(n^2)O(1)数据基本有序、小数组
桶排序O(n+k)O(n+k)O(n^2)O(n+k)数据分布均匀
基数排序O(nk)O(nk)O(nk)O(n+k)整数或字符串排序
冒泡排序O(n)O(n^2)O(n^2)O(1)教学演示

二、快速排序

1、核心思想

        使用分治法。

        每次选择一个基准元素,将数组分成两个部分:小于基准值的放左边,大于的放右边,然后递归处理两边,直到完全结束。

2、算法特点

        不稳定排序,原地排序。大多数通用排序任务中表现优异。

  • 时间复杂度:平均O(n log n) ;最坏情况:O(n^2)

  • 空间复杂度:O(log n),递归栈空间

稳定排序:

        当两个元素的值相等时,排序之后它们的相对顺序不会改变。

        当你排序的是多字段对象,而且希望保留“主键不变”的排序顺序时,稳定性很关键。比如先按“姓名”排,再按“成绩”稳定排序,这样姓名相同的学生仍保持之前的顺序。

原地排序:

        排序过程中只使用常数级别的额外空间(O(1)),排序操作直接在原数组上进行,不依赖额外的数据结构。

3、示例

// 简洁,但并非原地快排
function quickSort(arr) {
  if (arr.length <= 1) return arr;
  const pivot = arr[0];
  const left = arr.slice(1).filter(x => x <= pivot);
  const right = arr.slice(1).filter(x => x > pivot);
  return [...quickSort(left), pivot, ...quickSort(right)];
}



// 原地快排
function quickSort(arr, low = 0, high = arr.length - 1) {
  if (low < high) {
    // 获取分区索引:pivot 已放在正确位置
    const pivotIndex = partition(arr, low, high);

    // 递归排序 pivot 左右两部分
    quickSort(arr, low, pivotIndex - 1);
    quickSort(arr, pivotIndex + 1, high);
  }
  return arr; // 为了链式调用方便,可选
}

// 分区函数
function partition(arr, low, high) {
  const pivot = arr[high]; // 选最后一个元素为 pivot
  let i = low; // i 表示小于等于 pivot 区域的边界

  for (let j = low; j < high; j++) {
    // 如果当前元素 <= pivot,就把它放到左边区域
    if (arr[j] <= pivot) {
      [arr[i], arr[j]] = [arr[j], arr[i]]; // 交换
      i++; // 边界右移
    }
  }

  // 最后把 pivot(arr[high])放到它该在的位置
  [arr[i], arr[high]] = [arr[high], arr[i]];
  return i; // 返回 pivot 的最终位置
}

三、归并排序

1、核心思想

        先分解后合并,分解成唯一个体了自然就是有序的,实际是一种基于递归的排序策略。

        分解:将数组分成两半递归排序;合并:将两个有序数组合并成一个。

2、算法特点

        稳定排序,不原地排序。适用于大数据量、稳定性要求强的场景,如外部排序、大型电商列表等。

  • 时间复杂度:O(n log n)

  • 空间复杂度:O(n)

3、示例

function mergeSort(arr) {
  if (arr.length <= 1) return arr;
  const mid = Math.floor(arr.length / 2);
  const left = mergeSort(arr.slice(0, mid));
  const right = mergeSort(arr.slice(mid));

  let result = [], i = 0, j = 0;
  while (i < left.length && j < right.length) {
    result.push(left[i] <= right[j] ? left[i++] : right[j++]);
  }
  return [...result, ...left.slice(i), ...right.slice(j)];
}

四、堆排序

1、核心思想

        利用最大堆结构,每次把堆顶(最大值)放到数组末尾,重新调整堆。

2、算法特点

        不稳定排序,原地排序。适用于无需稳定性要求、空间敏感场景。

  • 时间复杂度:O(n log n)

  • 空间复杂度:O(1)

3、示例

function heapSort(arr) {
  const n = arr.length;

  // 构建大顶堆,从最后一个非叶子节点开始
  for (let i = Math.floor(n / 2) - 1; i >= 0; i--) {
    heapify(arr, n, i);
  }

  // 依次取出堆顶元素,放到数组末尾
  for (let i = n - 1; i > 0; i--) {
    [arr[0], arr[i]] = [arr[i], arr[0]]; // 交换堆顶与当前尾部
    heapify(arr, i, 0); // 重新对堆顶元素调整堆
  }

  return arr;
}

// 维护大顶堆的堆化过程
function heapify(arr, heapSize, rootIndex) {
  let largest = rootIndex;
  const left = 2 * rootIndex + 1;
  const right = 2 * rootIndex + 2;

  // 找出三个节点中最大的那个
  if (left < heapSize && arr[left] > arr[largest]) largest = left;
  if (right < heapSize && arr[right] > arr[largest]) largest = right;

  // 如果最大值不是根节点,交换并递归堆化
  if (largest !== rootIndex) {
    [arr[rootIndex], arr[largest]] = [arr[largest], arr[rootIndex]];
    heapify(arr, heapSize, largest);
  }
}

// 示例
const arr = [4, 10, 3, 5, 1];
console.log(heapSort(arr)); // 输出: [1, 3, 4, 5, 10]

五、排序方法对比与其他排序

        

        有一点需要注意,归并排序和堆排序的耗时都非常稳定,不管原始数据是整齐还是混乱,因为他们的执行流程不依赖于数据的初始顺序。但是快速排序耗时波动大,快排的性能高度依赖于“划分是否平衡”,而这个又与基准值的选择以及原始数据分布密切相关。

        相对来说,堆排序不如归并排序和快排常用,虽然堆排序的时间复杂度稳定,但在实际运行中堆的 heapify 操作涉及大量的父子节点交换,不如快排那样直接交换元素高效,且堆是树形结构,访问内存不是连续的,会导致 CPU 缓存命中率低,最后还不是稳定排序,虽然快速排序也不是稳定排序,但那是快排快啊。

        常见通用排序方法里面,只有快速排序、归并排序和堆排序的时间复杂度最优,像冒泡排序、插入排序、选择排序、希尔排序时间复杂度都要逊色一些。

        但有些排序方法,在特殊场景下的时间复杂度优于O(n log n),这里不详细介绍。

算法时间复杂度适用场景
计数排序O(n + k)整数且范围小(如 0~100)
桶排序O(n + k)分布均匀的浮点数
基数排序O(n · d)多位数或字符串,d 为位数

六、总结

        简单做一个“技术选型”的场景推荐:

  • 若数据量大,推荐 归并堆排序

  • 对性能极致要求时,快排更合适(但注意最坏 O(n²))

  • 空间敏感:选择堆排序

  • 数据几乎有序:插入排序

  • 数字范围小或分布均匀:计数/桶排序

  • 大批量整数:基数排序

        只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~

        其他热门文章,请关注:

        极致的灵活度满足工程美学:用Vue Flow绘制一个完美流程图

        你真的会使用Vue3的onMounted钩子函数吗?Vue3中onMounted的用法详解

        Web Worker:让前端飞起来的隐形引擎

        DeepSeek:全栈开发者视角下的AI革命者

        通过array.filter()实现数组的数据筛选、数据清洗和链式调用

        测评:这B班上的值不值?在不同城市过上同等生活水平到底需要多少钱?

        通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能

        TreeSize:免费的磁盘清理与管理神器,解决C盘爆满的燃眉之急

        通过MongoDB Atlas 实现语义搜索与 RAG——迈向AI的搜索机制

        深入理解 JavaScript 中的 Array.find() 方法:原理、性能优势与实用案例详解

        前端实战:基于Vue3与免费满血版DeepSeek实现无限滚动+懒加载+瀑布流模块及优化策略

        el-table实现动态数据的实时排序,一篇文章讲清楚elementui的表格排序功能

        JavaScript双问号操作符(??)详解,解决使用 || 时因类型转换带来的问题

      【前端实战】如何让用户回到上次阅读的位置?

        内存泄漏——海量数据背后隐藏的项目生产环境崩溃风险!如何避免内存泄漏

        MutationObserver详解+案例——深入理解 JavaScript 中的 MutationObserver

        JavaScript中通过array.map()实现数据转换、创建派生数组、异步数据流处理、DOM操作等

        高效工作流:用Mermaid绘制你的专属流程图;如何在Vue3中导入mermaid绘制流程图

评论 69
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值