Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
注明:本文属于博主原创,要转载请注明出处,尊重作品的原创性
转载请注明出处:https://blog.csdn.net/Resume_f/article/details/103000410
深度学习分类肺癌亚型和预测突变基因
这篇论文与2018年发表在nature medicine的一篇文章,是一项研究的成果,这为病理科医生以及肿瘤科医生(研究者)带来了新的曙光,该项研究是由纽约大学医学院完成的,他们的研究表明利用深度学习可以对非小细胞肺癌的病理切片结果进行分类以及突变基因的预测。这也是我阅读的第一篇预研究生的文章,下面我将从四个方面理解整篇文章:
- 科研背景
- 研究方法
- 实验及结果
- 工作总结
背景-肺癌的相关背景
肺癌是世界范围内最常见的恶性肿瘤之一,据美国癌症协会和癌症统计中心统计,每年超过15万肺癌患者死于肺癌。肺癌的致病因素有很多种,其发病率和死亡率都是最高的,是癌症中的第一大杀手。
肺癌按细胞形态分为非小细胞肺癌(non-small cell lung cancer,NSCLC约占80%)和小细胞肺癌(small cell lung cancer,SCLC大致约占20%) ,而大多数非小细胞肺癌被发现时已是晚期,若不干预治疗,生存率是很低的。在占据绝大多数的非小细胞肺癌中,肺腺癌(LUAD)和肺鳞状细胞癌(LUSC)是两个主要的亚型。但是这两种肺癌类型的治疗方案却截然不同,所以准确区分肺癌亚型成了诊断病症最关键的一步。
目前,组织病理切片是病理学科专家评估肺癌进展阶段、分类和分型的最主要方法之一,而这要靠经验丰富的病理科医生才能诊断。
科研背景
01. 病理学家诊断肺癌的困境
肺组织病理切片是用来诊断肺癌类型和时期的典型手段。通常是直接通过显微镜观察外观对组织分型,而在显微镜下观察组织的染色图像通常是放大倍数进行采集,故这种诊断方式存在很大难度,尤其在低分化肿瘤中,LUAD和LUSC之间的区别就更难分辨。
02. 人工智能分析肺癌切片图像
如今,借助人工智能对肺癌全片图像识别实现自动分型和预测肺癌是已成为现实,目前有Yu等人使用了机器学习结合图像处理技术和常规阈值化,实现区分正常切片和肿瘤切片(AUC达0.85)和区分LUAD和LUSU切片(AUC达0.75)[12]。
03. 深度学习技术分类预测肺癌
深度学习在癌症基因组图谱(TCGA)数据集上实现肺部肿瘤分类,其AUC达到0.83 [13],同时血浆DNA值分析已被证明可以很好地预测非小细胞癌的存在(AUC达0.94) [14],使用免疫化学标记物区分LUAD和LUSC的AUC达0.94 [15]。
本论文的工作
研究者训练了一个深度学习模型(谷歌的Inception V3)可以帮助病理科医生准确区分肺癌的亚型:LUAD和LUSC,还能确定细胞中与肺癌相关的六种基因的突变情况,该方法也可以适用于任意癌症类型
研究方法
分类肺癌及预测基因突变
在该项研究中,研究者选用了由谷歌开发