【python】实现NMS

本文详细介绍了在目标检测中常用的非极大值抑制(NMS)算法及其软版本Soft-NMS。NMS通过排序检测框的置信度并删除重叠区域较大的框来消除冗余。而Soft-NMS则通过降低而非直接删除高重叠区域的框的置信度,以保留更多信息。文章还探讨了两种不同形式的Soft-NMS:线性和高斯加权,并提供了实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NMS

NMS非极大值抑制,目标:消除多余的框,只保留最佳物体检测的位置

步骤:

  1. 对所有检测框按置信度进行排序
  2. 找出分数最高的检测框 B m a x B_{max} Bmax
  3. 遍历其他框,计算当前框与 B m a x B_{max} Bmax的重叠面积
  4. 如果重叠面积大于某个设定的阈值,则删除
  5. 继续对未处理的检测框进行排序
  6. 重复

检测模型的输出为:(batch_size, all_boxes, 4+1+num_classes)

对于yolo的输出结果具体为:
batch_size, x,y,w,h, 存在物体的概率,类别1的概率…类别n的概率

对于SSD的输出结果具体为:
batch_size, x,y,w,h, 存在背景的概率,类别1的概率…类别n的概率

实现NMS


'''对于yolo的nms代码'''

def nms(boxes, num_classes, conf_thres=0.5, nms_thres=0.4):
 #boxes: 检测的boxes及scores,维度(batch_size, all_boxes, 4+1+num_classes)
 #num_classes: 类别的数量
 #conf_thres: 预测框的阈值, nms_thres: 极大值抑制的阈值


 #取batch size
 bs = np.shape(boxes)[0]

 #将预测框(中心宽高)转成左上角右下角的形式
 shape_boxes = np.zeros_like(boxes[:,:,:4])
 shape_boxes[:,:,0] = boxes[:,:,0] - boxes[:,:,2]/2
 shape_boxes[:,:,1] = boxes[:,:,1] - boxes[:,:,3]/2
 shape_boxes[:,:,2] = boxes[:,:,0] + boxes[:,:,2]/2
 shape_boxes[:,:,3] = boxes[
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值