数据分析--05:Seaborn

本文详细介绍了Seaborn库,包括它的安装、基本使用、各种绘图方法如关系型绘图、分类绘图、分布绘图、线性回归绘图等,并涉及FacetGrid和调色盘的设置。Seaborn作为matplotlib的扩展,提供了一套预先配置好的风格和丰富的统计图形,便于数据可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Seaborn介绍

1、Seaborn介绍

  • Seaborn 是一个基于 matplotlib 且数据结构与 pandas 统一的统计图制作库。他提前已经定义好了一套自己的风格。然后也封装了一系列的方便的绘图函数,之前通过matplotlib需要很多代码才能完成的绘图,使用seaborn可能就是一行代码的事情。
  • 主要从以下几块介绍
    • 关系型绘图
    • 分类型绘图
    • 分布型绘图
    • 线性关系绘图

2、Seaborn安装

  • 通过 pip :pip install seaborn
  • 通过anaconda: conda install seaborn

3、Seaborn学习文档

二 、Seaborn绘图

1、关系型绘图

  • seaborn.relplot()
  • 这个函数功能非常强大,可以用来表示多个变量之间的关联关系。默认情况下是绘制散点图,也可以绘制线性图,具体绘制什么图形是通过kind参数来决定的。实际上以下两个函数就是relplot的特例:
    • 散点类型:scatterplot -> relplot(kind=“scatter”)
    • 线性类型:lineplot -> relplot(kind=“line”)

1.基本使用

import seaborn as sns
tips = sns.load_dataset("tips",cache=True)
sns.relplot(x="total_bill",y="tip",data=tips)

请添加图片描述

2.hue参数

  • hue参数是用来控制第三个变量的颜色显示的。比如我们在以上图的基础之上体现出星期几的参数,那么可以通过以下代码来实现:
sns.relplot(x="total_bill",y="tip",hue="day",data=tips)

请添加图片描述

3.添加col和row参数

  • col和row,可以将图根据某个属性的值的个数分割成多列或者多行。比如在以上图的基础之上我们想要把Lunch(午餐)和Dinner(晚餐)分割成两个图来显示,那么可以通过以下代码来实现:
sns.relplot(x="total_bill",y="tip",hue="day",col="time",data=tips)

请添加图片描述

4.绘制折线图

  • relplot通过设置kind="line"可以绘制折线图。并且他的功能比plt.plot更加强大。plot只能指定具体的x和y轴的数据(比如x轴是N个数,y轴也必须为N个数)。而relplot则可以在自动在两组数据中进行计算绘图。示例代码如下:
fmri = sns.load_dataset("fmri")
sns.relplot(x="timepoint",y="signal",kind="line",data=fmri)

请添加图片描述

2、分类绘图

  • 分类图的绘制,采用的是sns.catplot来实现的。cat是category的简写。这个方法默认绘制的是分类散点图,如果想要绘制其他类型的图,同样也是通过kind参数来指定。
    • 分类散点图
    • 分类分布图
    • 分类统计图

1.分类散点图

  • 分类散点图比较适合数据量不是很多的情况,他是用catplot来实现,但是也有以下两个特别的方法。
    • stripplot():catplot(kind=“strip”) 默认的
    • swarmplot():catplot(kind=“swarm”)
sns.catplot(x="day",y="total_bill",data=tips,hue="sex")

请添加图片描述

sns.catplot(x="day",y="total_bill",data=tips,hue="sex",kind="swarm")

请添加图片描述

2.分类分布图

分类分布图,主要是根据分类来看,然后在每个分类下数据的分布情况。也是通过catplot来实现,以下三个方法分别是不同的kind参数:

  • 箱型图:boxplot() (with kind=“box”)
  • 小提琴图:violinplot() (with kind=“violin”)

3.箱型图

请添加图片描述

countries = {
   
    'CHN':'中国',
    'JPN':"日本",
    'KOR':'韩国',
    'USA':"美国",
    'CAN':"加拿大",
    'BRA':"巴西",
    &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值