데이터 분석-05: Seaborn
一、Seaborn介绍
1、Seaborn介绍
- Seaborn 是一个基于 matplotlib 且数据结构与 pandas 统一的统计图制作库。他提前已经定义好了一套自己的风格。然后也封装了一系列的方便的绘图函数,之前通过matplotlib需要很多代码才能完成的绘图,使用seaborn可能就是一行代码的事情。
- 主要从以下几块介绍
- 关系型绘图
- 分类型绘图
- 分布型绘图
- 线性关系绘图
2、Seaborn安装
- 通过 pip :pip install seaborn
- 通过anaconda: conda install seaborn
3、Seaborn学习文档
- Seaborn官网:http://seaborn.pydata.org/
- Seaborn中文学习文档:https://www.cntofu.com/book/172/docs/1.md
二 、Seaborn绘图
1、关系型绘图
seaborn.relplot()
- 这个函数功能非常强大,可以用来表示多个变量之间的关联关系。默认情况下是绘制散点图,也可以绘制线性图,具体绘制什么图形是通过kind参数来决定的。实际上以下两个函数就是relplot的特例:
- 散点类型:scatterplot -> relplot(kind=“scatter”)
- 线性类型:lineplot -> relplot(kind=“line”)
1.基本使用
import seaborn as sns
tips = sns.load_dataset("tips",cache=True)
sns.relplot(x="total_bill",y="tip",data=tips)
2.hue参数
- hue参数是用来控制第三个变量的颜色显示的。比如我们在以上图的基础之上体现出星期几的参数,那么可以通过以下代码来实现:
sns.relplot(x="total_bill",y="tip",hue="day",data=tips)
3.添加col和row参数
- col和row,可以将图根据某个属性的值的个数分割成多列或者多行。比如在以上图的基础之上我们想要把Lunch(午餐)和Dinner(晚餐)分割成两个图来显示,那么可以通过以下代码来实现:
sns.relplot(x="total_bill",y="tip",hue="day",col="time",data=tips)
4.绘制折线图
- relplot通过设置kind="line"可以绘制折线图。并且他的功能比plt.plot更加强大。plot只能指定具体的x和y轴的数据(比如x轴是N个数,y轴也必须为N个数)。而relplot则可以在自动在两组数据中进行计算绘图。示例代码如下:
fmri = sns.load_dataset("fmri")
sns.relplot(x="timepoint",y="signal",kind="line",data=fmri)
2、分类绘图
- 分类图的绘制,采用的是sns.catplot来实现的。cat是category的简写。这个方法默认绘制的是分类散点图,如果想要绘制其他类型的图,同样也是通过kind参数来指定。
- 分类散点图
- 分类分布图
- 分类统计图
1.分类散点图
- 分类散点图比较适合数据量不是很多的情况,他是用catplot来实现,但是也有以下两个特别的方法。
- stripplot():catplot(kind=“strip”) 默认的
- swarmplot():catplot(kind=“swarm”)
sns.catplot(x="day",y="total_bill",data=tips,hue="sex")
sns.catplot(x="day",y="total_bill",data=tips,hue="sex",kind="swarm")
2.分类分布图
分类分布图,主要是根据分类来看,然后在每个分类下数据的分布情况。也是通过catplot来实现,以下三个方法分别是不同的kind参数:
- 箱型图:boxplot() (with kind=“box”)
- 小提琴图:violinplot() (with kind=“violin”)
3.箱型图
countries = {
'CHN':'中国',
'JPN':"日本",
'KOR':'韩国',
'USA':"美国",
'CAN':"加拿大",
'BRA':"巴西",
&